IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v20y2017i4d10.1007_s10729-016-9373-3.html
   My bibliography  Save this article

Using observed sequence to orient causal networks

Author

Listed:
  • Farrokh Alemi

    (George Mason University)

  • Manaf Zargoush

    (McMaster University)

  • Jee Vang

    (George Mason University)

Abstract

In learning causal networks, typically cross-sectional data are used and the sequence among the network nodes is learned through conditional independence. Sequence is inherently a longitudinal concept. We propose to learn sequence of events in longitudinal data and use it to orient arc directions in a network learned from cross-sectional data. The network is learned from cross-sectional data using various established algorithms, with one modification. Arc directions that do not agree with the longitudinal sequence were prohibited. We established longitudinal sequence through two methods: Probabilistic Contrast, and Goodman and Kruskal error reduction methods. In simulated data, the error reduction method was used to learn the sequence in the data. The procedure reduced the number of arc direction errors and larger improvements were observed with increasing number of events in the network. In real data, different algorithms were used to learn the network from cross-sectional data, while prohibiting arc directions not supported by longitudinal information. The agreement among learned networks increased significantly. It is possible to combine sequence information learned from longitudinal data with algorithms organized for learning network models from cross-sectional data. Such models may have additional causal interpretation as they more explicitly take into account observed sequence of events.

Suggested Citation

  • Farrokh Alemi & Manaf Zargoush & Jee Vang, 2017. "Using observed sequence to orient causal networks," Health Care Management Science, Springer, vol. 20(4), pages 590-599, December.
  • Handle: RePEc:kap:hcarem:v:20:y:2017:i:4:d:10.1007_s10729-016-9373-3
    DOI: 10.1007/s10729-016-9373-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-016-9373-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-016-9373-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hilde Bras & Aart Liefbroer & Cees Elzinga, 2010. "Standardization of pathways to adulthood? an analysis of Dutch cohorts born between 1850 and 1900," Demography, Springer;Population Association of America (PAA), vol. 47(4), pages 1013-1034, November.
    2. Kandel, D. & Yamaguchi, K., 1993. "From beer to crack: Developmental patterns of drug involvement," American Journal of Public Health, American Public Health Association, vol. 83(6), pages 851-855.
    3. Aldrich, J., 1995. "Correlations genuine and spurious in Pearson and Yule," Discussion Paper Series In Economics And Econometrics 9502, Economics Division, School of Social Sciences, University of Southampton.
    4. Deville, J. -C. & Saporta, G., 1983. "Correspondence analysis, with an extension towards nominal time series," Journal of Econometrics, Elsevier, vol. 22(1-2), pages 169-189.
    5. Matthias Studer & Gilbert Ritschard, 2016. "What matters in differences between life trajectories: a comparative review of sequence dissimilarity measures," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(2), pages 481-511, February.
    6. Andrew Abbott, 1990. "A Primer on Sequence Methods," Organization Science, INFORMS, vol. 1(4), pages 375-392, November.
    7. Pearl Judea, 2010. "An Introduction to Causal Inference," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-62, February.
    8. Ross D. Shachter, 1988. "Probabilistic Inference and Influence Diagrams," Operations Research, INFORMS, vol. 36(4), pages 589-604, August.
    9. Manaf Zargoush & Farrokh Alemi & Vinzenzo Esposito Vinzi & Jee Vang & Raya Kheirbek, 2014. "A psychological approach to learning causal networks," Health Care Management Science, Springer, vol. 17(2), pages 194-201, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liao, Tim F. & Bolano, Danilo & Brzinsky-Fay, Christian & Cornwell, Benjamin & Fasang, Anette Eva & Helske, Satu & Piccarreta, Raffaella & Raab, Marcel & Ritschard, Gilbert & Struffolino, Emanuela & S, 2022. "Sequence analysis: Its past, present, and future," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 107, pages 1-1.
    2. Devillanova, Carlo & Raitano, Michele & Struffolino, Emanuela, 2019. "Longitudinal employment trajectories and health in middle life: Insights from linked administrative and survey data," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, pages 1375-1412.
    3. Cees H. Elzinga & Matthias Studer, 2019. "Normalization of Distance and Similarity in Sequence Analysis," Sociological Methods & Research, , vol. 48(4), pages 877-904, November.
    4. Ricard, Antonin & Shimizu, Katsuhiko & Vieu, Marion, 2021. "Deepening the timing dimension of emerging market multinational companies’ internationalization – An exploratory perspective," Journal of International Management, Elsevier, vol. 27(3).
    5. Koch, Michael & Park, Sarah & Zahra, Shaker A., 2021. "Career patterns in self-employment and career success," Journal of Business Venturing, Elsevier, vol. 36(1).
    6. Dolores Sesma Carlos & Michel Oris & Jan Kok, 2022. "Coping with ageing: An historical longitudinal study of internal return migrations later in life in the Netherlands," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 46(27), pages 767-808.
    7. Struffolino, Emanuela, 2019. "Navigating the early career: The social stratification of young workers’ employment trajectories in Italy," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 63, pages 1-17.
    8. Hilde Bras & Reto Schumacher, 2019. "Changing gender relations, declining fertility? An analysis of childbearing trajectories in 19th-century Netherlands," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(30), pages 873-912.
    9. Marcel Raab & Emanuela Struffolino, 2020. "The Heterogeneity of Partnership Trajectories to Childlessness in Germany," European Journal of Population, Springer;European Association for Population Studies, vol. 36(1), pages 53-70, March.
    10. Nicholas A Jamnick & Javier Botella & David B Pyne & David J Bishop, 2018. "Manipulating graded exercise test variables affects the validity of the lactate threshold and V˙O2peak," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-21, July.
    11. repec:rdg:wpaper:em-dp2013-03 is not listed on IDEAS
    12. Júlia Mikolai & Hill Kulu, 2019. "Union dissolution and housing trajectories in Britain," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(7), pages 161-196.
    13. Tobias Wand & Oliver Kamps & Hiroshi Iyetomi, 2024. "Causal Hierarchy in the Financial Market Network -- Uncovered by the Helmholtz-Hodge-Kodaira Decomposition," Papers 2408.12839, arXiv.org.
    14. repec:jss:jstsof:40:i04 is not listed on IDEAS
    15. Zachary Van Winkle & Anette Fasang, 2021. "The complexity of employment and family life courses across 20th century Europe: More evidence for larger cross-national differences but little change across 1916‒1966 birth cohorts," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 44(32), pages 775-810.
    16. Karim M. Abadir & Gabriel Talmain, 2012. "Beyond Co-Integration: Modelling Co-Movements in Macro finance," Working Paper series 25_12, Rimini Centre for Economic Analysis.
    17. Babette Bühler & Katja Möhring & Andreas P. Weiland, 2022. "Assessing dissimilarity of employment history information from survey and administrative data using sequence analysis techniques," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(6), pages 4747-4774, December.
    18. Marcantonio Caltabiano & Silvia Meggiolaro & Valentina Tocchioni, 2023. "The impact of parental separation on the pattern of transition to adulthood in Italy," Econometrics Working Papers Archive 2023_07, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    19. Marc A. Scott & Kaushik Mohan & Jacques‐Antoine Gauthier, 2020. "Model‐based clustering and analysis of life history data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1231-1251, June.
    20. Omar N. Solinger & Woody van Olffen & Robert A. Roe & Joeri Hofmans, 2013. "On Becoming (Un)Committed: A Taxonomy and Test of Newcomer Onboarding Scenarios," Organization Science, INFORMS, vol. 24(6), pages 1640-1661, December.
    21. Studer, Matthias & Struffolino, Emanuela & Fasang, Anette Eva, 2018. "Estimating the Relationship between Time-varying Covariates and Trajectories: The Sequence Analysis Multistate Model Procedure," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 48(1), pages 103-135.
    22. Letizia Mencarini & Raffaella Piccarreta & Marco Le Moglie, 2022. "Life‐course perspective on personality traits and fertility with sequence analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1344-1369, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:20:y:2017:i:4:d:10.1007_s10729-016-9373-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.