Using optimization models to demonstrate the need for structural changes in training programs for surgical medical residents
Author
Abstract
Suggested Citation
DOI: 10.1007/s10729-013-9230-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jeff Linderoth & Alexander Shapiro & Stephen Wright, 2006. "The empirical behavior of sampling methods for stochastic programming," Annals of Operations Research, Springer, vol. 142(1), pages 215-241, February.
- Topaloglu, Seyda, 2009. "A shift scheduling model for employees with different seniority levels and an application in healthcare," European Journal of Operational Research, Elsevier, vol. 198(3), pages 943-957, November.
- Lori S. Franz & Janis L. Miller, 1993. "Scheduling Medical Residents to Rotations: Solving the Large-Scale Multiperiod Staff Assignment Problem," Operations Research, INFORMS, vol. 41(2), pages 269-279, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Brech, Claus-Henning & Ernst, Andreas & Kolisch, Rainer, 2019. "Scheduling medical residents’ training at university hospitals," European Journal of Operational Research, Elsevier, vol. 274(1), pages 253-266.
- Jonathan P. Turner & Heron E. Rodriguez & Debra A. DaRosa & Mark S. Daskin & Amanda Hayman & Sanjay Mehrotra, 2013. "Northwestern University Feinberg School of Medicine Uses Operations Research Tools to Improve Surgeon Training," Interfaces, INFORMS, vol. 43(4), pages 341-351, August.
- Young-Chae Hong & Amy Cohn & Stephen Gorga & Edmond O’Brien & William Pozehl & Jennifer Zank, 2019. "Using Optimization Techniques and Multidisciplinary Collaboration to Solve a Challenging Real-World Residency Scheduling Problem," Interfaces, INFORMS, vol. 49(3), pages 201-212, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Brech, Claus-Henning & Ernst, Andreas & Kolisch, Rainer, 2019. "Scheduling medical residents’ training at university hospitals," European Journal of Operational Research, Elsevier, vol. 274(1), pages 253-266.
- Jonathan P. Turner & Heron E. Rodriguez & Debra A. DaRosa & Mark S. Daskin & Amanda Hayman & Sanjay Mehrotra, 2013. "Northwestern University Feinberg School of Medicine Uses Operations Research Tools to Improve Surgeon Training," Interfaces, INFORMS, vol. 43(4), pages 341-351, August.
- Young-Chae Hong & Amy Cohn & Stephen Gorga & Edmond O’Brien & William Pozehl & Jennifer Zank, 2019. "Using Optimization Techniques and Multidisciplinary Collaboration to Solve a Challenging Real-World Residency Scheduling Problem," Interfaces, INFORMS, vol. 49(3), pages 201-212, May.
- Jens Brunner & Günther Edenharter, 2011. "Long term staff scheduling of physicians with different experience levels in hospitals using column generation," Health Care Management Science, Springer, vol. 14(2), pages 189-202, June.
- Castaño, Fabián & Velasco, Nubia, 2020. "Exact and heuristic approaches for the automated design of medical trainees rotation schedules," Omega, Elsevier, vol. 97(C).
- Ruben A. Proano & Akshit Agarwal, 2018. "Scheduling internal medicine resident rotations to ensure fairness and facilitate continuity of care," Health Care Management Science, Springer, vol. 21(4), pages 461-474, December.
- David Rea & Craig Froehle & Suzanne Masterson & Brian Stettler & Gregory Fermann & Arthur Pancioli, 2021. "Unequal but Fair: Incorporating Distributive Justice in Operational Allocation Models," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2304-2320, July.
- Michael Freimer & Jeffrey Linderoth & Douglas Thomas, 2012. "The impact of sampling methods on bias and variance in stochastic linear programs," Computational Optimization and Applications, Springer, vol. 51(1), pages 51-75, January.
- Zéphyr, Luckny & Lang, Pascal & Lamond, Bernard F. & Côté, Pascal, 2017. "Approximate stochastic dynamic programming for hydroelectric production planning," European Journal of Operational Research, Elsevier, vol. 262(2), pages 586-601.
- Alexandre Forel & Martin Grunow, 2023. "Dynamic stochastic lot sizing with forecast evolution in rolling‐horizon planning," Production and Operations Management, Production and Operations Management Society, vol. 32(2), pages 449-468, February.
- Chen, Lijian, 2020. "Determine the cost of denying boarding to passengers: An optimization-based approach," International Journal of Production Economics, Elsevier, vol. 220(C).
- Frederick M Howard & Catherine A Gao & Christopher Sankey, 2020. "Implementation of an automated scheduling tool improves schedule quality and resident satisfaction," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-9, August.
- Güzin Bayraksan & David P. Morton, 2011. "A Sequential Sampling Procedure for Stochastic Programming," Operations Research, INFORMS, vol. 59(4), pages 898-913, August.
- Emelogu, Adindu & Chowdhury, Sudipta & Marufuzzaman, Mohammad & Bian, Linkan & Eksioglu, Burak, 2016. "An enhanced sample average approximation method for stochastic optimization," International Journal of Production Economics, Elsevier, vol. 182(C), pages 230-252.
- Xiaotie Chen & David L. Woodruff, 2024. "Distributions and bootstrap for data-based stochastic programming," Computational Management Science, Springer, vol. 21(1), pages 1-21, June.
- Miao Bai & Bjorn Berg & Esra Sisikoglu Sir & Mustafa Y. Sir, 2023. "Partially partitioned templating strategies for outpatient specialty practices," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 301-318, January.
- Halit Üster & Sung Ook Hwang, 2017. "Closed-Loop Supply Chain Network Design Under Demand and Return Uncertainty," Transportation Science, INFORMS, vol. 51(4), pages 1063-1085, November.
- Fei, Xin & Gülpınar, Nalân & Branke, Jürgen, 2019. "Efficient solution selection for two-stage stochastic programs," European Journal of Operational Research, Elsevier, vol. 277(3), pages 918-929.
- Löhndorf, Nils, 2016. "An empirical analysis of scenario generation methods for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 255(1), pages 121-132.
- Shi, Qingxin & Li, Fangxing & Dong, Jin & Olama, Mohammed & Wang, Xiaofei & Winstead, Chris & Kuruganti, Teja, 2022. "Co-optimization of repairs and dynamic network reconfiguration for improved distribution system resilience," Applied Energy, Elsevier, vol. 318(C).
More about this item
Keywords
Staffing and scheduling; Stochastic optimization; Medical education; Residency; Continuity of care; Resident case logs; Handoffs; Operations research;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:16:y:2013:i:3:p:217-227. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.