IDEAS home Printed from https://ideas.repec.org/a/bla/popmgt/v32y2023i2p449-468.html
   My bibliography  Save this article

Dynamic stochastic lot sizing with forecast evolution in rolling‐horizon planning

Author

Listed:
  • Alexandre Forel
  • Martin Grunow

Abstract

Academic approaches considering demand uncertainty in lot sizing are seldom used in practice. Industry typically implements deterministic models and accounts for uncertainties by using a rolling‐horizon planning framework with frequent forecast updates. This paper bridges this gap by proposing a stochastic lot‐sizing methodology adapted to rolling‐horizon processes. Using the martingale model of forecast evolution (MMFE), we are able to anticipate the forecast updates from rolling‐horizon planning in stochastic lot sizing. Our formulation is extended with production recourse to reflect the replanning flexibility of rolling‐horizon planning. Extensive simulations on both synthetic and real‐world data show the value of forecast evolution models. Forecast evolution models reduce actual costs by 14% on average compared to traditional deterministic planning. The advantage of the extended model with production recourse depends on several factors including capacity, correlation, and uncertainty. Sensitivity analyses show that recourse can reduce costs by an additional 3% on average and up to 10% in specific settings. Using real‐world and synthetic data, we provide the first analysis of the value of additive and multiplicative MMFE‐based planning models when the true forecast evolution process is unknown. We show that, contrary to the existing consensus, the additive model performs more robustly than the multiplicative model on a wide array of problem settings.

Suggested Citation

  • Alexandre Forel & Martin Grunow, 2023. "Dynamic stochastic lot sizing with forecast evolution in rolling‐horizon planning," Production and Operations Management, Production and Operations Management Society, vol. 32(2), pages 449-468, February.
  • Handle: RePEc:bla:popmgt:v:32:y:2023:i:2:p:449-468
    DOI: 10.1111/poms.13881
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/poms.13881
    Download Restriction: no

    File URL: https://libkey.io/10.1111/poms.13881?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yimin Wang & Brian Tomlin, 2009. "To wait or not to wait: Optimal ordering under lead time uncertainty and forecast updating," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(8), pages 766-779, December.
    2. Warren H. Hausman, 1969. "Sequential Decision Problems: A Model to Exploit Existing Forecasters," Management Science, INFORMS, vol. 16(2), pages 93-111, October.
    3. Jeff Linderoth & Alexander Shapiro & Stephen Wright, 2006. "The empirical behavior of sampling methods for stochastic programming," Annals of Operations Research, Springer, vol. 142(1), pages 215-241, February.
    4. Özalp Özer & Wei Wei, 2004. "Inventory Control with Limited Capacity and Advance Demand Information," Operations Research, INFORMS, vol. 52(6), pages 988-1000, December.
    5. Warren H. Hausman & Rein Peterson, 1972. "Multiproduct Production Scheduling for Style Goods with Limited Capacity, Forecast Revisions and Terminal Delivery," Management Science, INFORMS, vol. 18(7), pages 370-383, March.
    6. Niels De Smet & Stefan Minner & El-Houssaine Aghezzaf & Bram Desmet, 2020. "A linearisation approach to the stochastic dynamic capacitated lotsizing problem with sequence-dependent changeovers," International Journal of Production Research, Taylor & Francis Journals, vol. 58(16), pages 4980-5005, July.
    7. Karen L. Donohue, 2000. "Efficient Supply Contracts for Fashion Goods with Forecast Updating and Two Production Modes," Management Science, INFORMS, vol. 46(11), pages 1397-1411, November.
    8. Tong Wang & Atalay Atasu & Mümin Kurtuluş, 2012. "A Multiordering Newsvendor Model with Dynamic Forecast Evolution," Manufacturing & Service Operations Management, INFORMS, vol. 14(3), pages 472-484, July.
    9. Tetsuo Iida & Paul H. Zipkin, 2006. "Approximate Solutions of a Dynamic Forecast-Inventory Model," Manufacturing & Service Operations Management, INFORMS, vol. 8(4), pages 407-425, October.
    10. Amirhosein Norouzi & Reha Uzsoy, 2014. "Modeling the evolution of dependency between demands, with application to inventory planning," IISE Transactions, Taylor & Francis Journals, vol. 46(1), pages 55-66.
    11. Warren B. Powell, 2016. "Perspectives of approximate dynamic programming," Annals of Operations Research, Springer, vol. 241(1), pages 319-356, June.
    12. Sereshti, Narges & Adulyasak, Yossiri & Jans, Raf, 2021. "The value of aggregate service levels in stochastic lot sizing problems," Omega, Elsevier, vol. 102(C).
    13. Jochen Schlapp & Moritz Fleischmann & Danja Sonntag, 2022. "Inventory timing: How to serve a stochastic season," Production and Operations Management, Production and Operations Management Society, vol. 31(7), pages 2891-2906, July.
    14. Li Chen & Hau L. Lee, 2009. "Information Sharing and Order Variability Control Under a Generalized Demand Model," Management Science, INFORMS, vol. 55(5), pages 781-797, May.
    15. Rossi, Roberto & Kilic, Onur A. & Tarim, S. Armagan, 2015. "Piecewise linear approximations for the static–dynamic uncertainty strategy in stochastic lot-sizing," Omega, Elsevier, vol. 50(C), pages 126-140.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiang, Mengyuan & Rossi, Roberto & Martin-Barragan, Belen & Tarim, S. Armagan, 2023. "A mathematical programming-based solution method for the nonstationary inventory problem under correlated demand," European Journal of Operational Research, Elsevier, vol. 304(2), pages 515-524.
    2. Tong Wang & Atalay Atasu & Mümin Kurtuluş, 2012. "A Multiordering Newsvendor Model with Dynamic Forecast Evolution," Manufacturing & Service Operations Management, INFORMS, vol. 14(3), pages 472-484, July.
    3. Sechan Oh & Özalp Özer, 2013. "Mechanism Design for Capacity Planning Under Dynamic Evolutions of Asymmetric Demand Forecasts," Management Science, INFORMS, vol. 59(4), pages 987-1007, April.
    4. Baron, Opher & Callen, Jeffrey L. & Segal, Dan, 2023. "Does the bullwhip matter economically? A cross-sectional firm-level analysis," International Journal of Production Economics, Elsevier, vol. 259(C).
    5. Robert L. Bray & Haim Mendelson, 2012. "Information Transmission and the Bullwhip Effect: An Empirical Investigation," Management Science, INFORMS, vol. 58(5), pages 860-875, May.
    6. Zhu, Stuart X., 2017. "Approximate solutions and cost error bounds for quantity flexibility replenishment," International Journal of Production Economics, Elsevier, vol. 193(C), pages 306-315.
    7. Pinçe, Çerağ & Yücesan, Enver & Bhaskara, Prithveesha Govinda, 2021. "Accurate response in agricultural supply chains," Omega, Elsevier, vol. 100(C).
    8. Dehaybe, Henri & Catanzaro, Daniele & Chevalier, Philippe, 2024. "Deep Reinforcement Learning for inventory optimization with non-stationary uncertain demand," European Journal of Operational Research, Elsevier, vol. 314(2), pages 433-445.
    9. Felix Papier, 2016. "Supply Allocation Under Sequential Advance Demand Information," Operations Research, INFORMS, vol. 64(2), pages 341-361, April.
    10. Baruah, Pundarikaksha & Chinnam, Ratna Babu & Korostelev, Alexander & Dalkiran, Evrim, 2016. "Optimal soft-order revisions under demand and supply uncertainty and upstream information," International Journal of Production Economics, Elsevier, vol. 182(C), pages 14-25.
    11. Altug, Mehmet Sekip & Muharremoglu, Alp, 2011. "Inventory management with advance supply information," International Journal of Production Economics, Elsevier, vol. 129(2), pages 302-313, February.
    12. Glock, Christoph H. & Rekik, Yacine & Ries, Jörg M., 2020. "A coordination mechanism for supply chains with capacity expansions and order-dependent lead times," European Journal of Operational Research, Elsevier, vol. 285(1), pages 247-262.
    13. Işık Biçer & Florian Lücker & Tamer Boyacı, 2022. "Beyond Retail Stores: Managing Product Proliferation along the Supply Chain," Production and Operations Management, Production and Operations Management Society, vol. 31(3), pages 1135-1156, March.
    14. Philip Kaminsky & Jayashankar M. Swaminathan, 2001. "Utilizing Forecast Band Refinement for Capacitated Production Planning," Manufacturing & Service Operations Management, INFORMS, vol. 3(1), pages 68-81, August.
    15. Nicola Secomandi & Sunder Kekre, 2014. "Optimal Energy Procurement in Spot and Forward Markets," Manufacturing & Service Operations Management, INFORMS, vol. 16(2), pages 270-282, May.
    16. Işık Biçer, & Florian Lücker, & Tamer Boyaci,, 2019. "Beyond retail stores: Managing product proliferation along the supply chain," ESMT Research Working Papers ESMT-19-02_R2, ESMT European School of Management and Technology, revised 16 Mar 2021.
    17. Dan A. Iancu & Mayank Sharma & Maxim Sviridenko, 2013. "Supermodularity and Affine Policies in Dynamic Robust Optimization," Operations Research, INFORMS, vol. 61(4), pages 941-956, August.
    18. Bitran, Gabriel R. & Wadhwa, Hitendra K. S. (Hitendra Kumar Singh), 1996. "A methodology for demand learning with an application to the optimal pricing of seasonal products," Working papers 3898-96., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    19. Tetsuo Iida & Paul Zipkin, 2010. "Competition and Cooperation in a Two-Stage Supply Chain with Demand Forecasts," Operations Research, INFORMS, vol. 58(5), pages 1350-1363, October.
    20. QU, Zhan & RAFF, Horst, 2023. "Two-part tariffs, inventory stockpiling, and the bullwhip effect," European Journal of Operational Research, Elsevier, vol. 308(1), pages 201-214.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:popmgt:v:32:y:2023:i:2:p:449-468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1937-5956 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.