IDEAS home Printed from https://ideas.repec.org/a/kap/enreec/v73y2019i1d10.1007_s10640-018-0262-8.html
   My bibliography  Save this article

Weather, Climate and Total Factor Productivity

Author

Listed:
  • Marco Letta

    (Sapienza Università di Roma)

  • Richard S. J. Tol

    (University of Sussex
    Vrije Universiteit, Amsterdam
    Tinbergen Institute
    CESifo)

Abstract

Recently it has been hypothesized that climate change will affect total factor productivity growth. Given the importance of TFP for long-run economic growth, if true this would entail a substantial upward revision of current impact estimates. Using macro TFP data from a recently developed dataset in the Penn World Table, we test this hypothesis by directly examining the nature of the relationship between annual temperature shocks and TFP growth rates in the period 1960–2006. The results show a negative relationship only exists in poor countries, where a 1 °C annual increase in temperature decreases TFP growth rates by about 1.1–1.8 percentage points, whereas the impact is indistinguishable from zero in rich countries. Extrapolating from weather to climate, the possibility of dynamic effects of climate change in poor countries increases concerns over the distributional issues of future impacts and, from a policy perspective, restates the case for complementarity between climate policy and poverty reduction.

Suggested Citation

  • Marco Letta & Richard S. J. Tol, 2019. "Weather, Climate and Total Factor Productivity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(1), pages 283-305, May.
  • Handle: RePEc:kap:enreec:v:73:y:2019:i:1:d:10.1007_s10640-018-0262-8
    DOI: 10.1007/s10640-018-0262-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10640-018-0262-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10640-018-0262-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Robert C. Feenstra & Robert Inklaar & Marcel P. Timmer, 2015. "The Next Generation of the Penn World Table," American Economic Review, American Economic Association, vol. 105(10), pages 3150-3182, October.
    2. Rachel Griffith & Stephen Redding & John Van Reenen, 2004. "Mapping the Two Faces of R&D: Productivity Growth in a Panel of OECD Industries," The Review of Economics and Statistics, MIT Press, vol. 86(4), pages 883-895, November.
    3. Nordhaus, William D, 1991. "To Slow or Not to Slow: The Economics of the Greenhouse Effect," Economic Journal, Royal Economic Society, vol. 101(407), pages 920-937, July.
    4. Fankhauser, Samuel & S.J. Tol, Richard, 2005. "On climate change and economic growth," Resource and Energy Economics, Elsevier, vol. 27(1), pages 1-17, January.
    5. Marshall Burke & Solomon M. Hsiang & Edward Miguel, 2015. "Global non-linear effect of temperature on economic production," Nature, Nature, vol. 527(7577), pages 235-239, November.
    6. Zhang, Peng & Deschenes, Olivier & Meng, Kyle & Zhang, Junjie, 2018. "Temperature effects on productivity and factor reallocation: Evidence from a half million chinese manufacturing plants," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 1-17.
    7. Kenneth Gillingham & William D. Nordhaus & David Anthoff & Geoffrey Blanford & Valentina Bosetti & Peter Christensen & Haewon McJeon & John Reilly & Paul Sztorc, 2015. "Modeling Uncertainty in Climate Change: A Multi-Model Comparison," NBER Working Papers 21637, National Bureau of Economic Research, Inc.
    8. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(1), pages 65-94.
    9. John Luke Gallup & Jeffrey D. Sachs & Andrew D. Mellinger, 1999. "Geography and Economic Development," International Regional Science Review, , vol. 22(2), pages 179-232, August.
    10. Richard S J Tol, 2018. "The Economic Impacts of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 4-25.
    11. Easterly, William & Levine, Ross, 2003. "Tropics, germs, and crops: how endowments influence economic development," Journal of Monetary Economics, Elsevier, vol. 50(1), pages 3-39, January.
    12. John C. Driscoll & Aart C. Kraay, 1998. "Consistent Covariance Matrix Estimation With Spatially Dependent Panel Data," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 549-560, November.
    13. Marcella Alsan, 2015. "The Effect of the TseTse Fly on African Development," American Economic Review, American Economic Association, vol. 105(1), pages 382-410, January.
    14. Wolfgang Keller, 2004. "International Technology Diffusion," Journal of Economic Literature, American Economic Association, vol. 42(3), pages 752-782, September.
    15. Robert S. Pindyck, 2013. "Climate Change Policy: What Do the Models Tell Us?," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 860-872, September.
    16. John Luke Gallup & Jeffrey D. Sachs & Andrew Mellinger, 1999. "Geography and Economic Development," CID Working Papers 1, Center for International Development at Harvard University.
    17. Jonathan Colmer, 2021. "Temperature, Labor Reallocation, and Industrial Production: Evidence from India," American Economic Journal: Applied Economics, American Economic Association, vol. 13(4), pages 101-124, October.
    18. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
    19. Martin L. Weitzman, 2009. "On Modeling and Interpreting the Economics of Catastrophic Climate Change," The Review of Economics and Statistics, MIT Press, vol. 91(1), pages 1-19, February.
    20. Geoffrey Heal & Jisung Park, 2015. "Goldilocks Economies? Temperature Stress and the Direct Impacts of Climate Change," NBER Working Papers 21119, National Bureau of Economic Research, Inc.
    21. Dietz, Simon & Stern, Nicholas, 2015. "Endogenous growth, convexity of damage and climate risk: how Nordhaus’ framework supports deep cuts in carbon emissions," LSE Research Online Documents on Economics 58406, London School of Economics and Political Science, LSE Library.
    22. Daron Acemoglu & Simon Johnson & James A. Robinson, 2001. "The Colonial Origins of Comparative Development: An Empirical Investigation," American Economic Review, American Economic Association, vol. 91(5), pages 1369-1401, December.
    23. John Luke Gallup & Jeffrey D. Sachs & Andrew Mellinger, 1999. "Geography and Economic Development," CID Working Papers 01A, Center for International Development at Harvard University.
    24. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    25. Olsson, Ola & Hibbs, Douglas Jr., 2005. "Biogeography and long-run economic development," European Economic Review, Elsevier, vol. 49(4), pages 909-938, May.
    26. Stéphane Hallegatte, 2005. "The time scales of the climate-economy feedback and the climatic cost of growth," Post-Print hal-00716720, HAL.
    27. Dani Rodrik & Arvind Subramanian & Francesco Trebbi, 2004. "Institutions Rule: The Primacy of Institutions Over Geography and Integration in Economic Development," Journal of Economic Growth, Springer, vol. 9(2), pages 131-165, June.
    28. Gallup, J.L. & Sachs, J.D. & Mullinger, A., 1999. "Geography and Economic Development," Papers 1, Chicago - Graduate School of Business.
    29. Frances C. Moore & Delavane B. Diaz, 2015. "Temperature impacts on economic growth warrant stringent mitigation policy," Nature Climate Change, Nature, vol. 5(2), pages 127-131, February.
    30. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2012. "Temperature Shocks and Economic Growth: Evidence from the Last Half Century," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(3), pages 66-95, July.
    31. Solomon M. Hsiang & Amir S. Jina, 2014. "The Causal Effect of Environmental Catastrophe on Long-Run Economic Growth: Evidence From 6,700 Cyclones," NBER Working Papers 20352, National Bureau of Economic Research, Inc.
    32. Nicholas Stern, 2013. "The Structure of Economic Modeling of the Potential Impacts of Climate Change: Grafting Gross Underestimation of Risk onto Already Narrow Science Models," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 838-859, September.
    33. Pindyck, Robert S., 2012. "Uncertain outcomes and climate change policy," Journal of Environmental Economics and Management, Elsevier, vol. 63(3), pages 289-303.
    34. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    35. Weitzman, Martin L., 2010. "What Is the "Damages Function" for Global Warming — And What Difference Might It Make?," Scholarly Articles 33373343, Harvard University Department of Economics.
    36. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801, September.
    37. Simon Dietz & Nicholas Stern, 2015. "Endogenous Growth, Convexity of Damage and Climate Risk: How Nordhaus' Framework Supports Deep Cuts in Carbon Emissions," Economic Journal, Royal Economic Society, vol. 0(583), pages 574-620, March.
    38. Ravi Bansal & Marcelo Ochoa, 2011. "Temperature, Aggregate Risk, and Expected Returns," NBER Working Papers 17575, National Bureau of Economic Research, Inc.
    39. Gallup, John L. & Sachs, Jeffrey D. & Mellinger, Andrew, "undated". "Geography and Economic Development," Instructional Stata datasets for econometrics geodata, Boston College Department of Economics.
    40. Stéphane Hallegatte, 2005. "The long time scales of the climate–economy feedback and the climatic cost of growth," Post-Print halshs-00008707, HAL.
    41. Maximilian Auffhammer & Solomon M. Hsiang & Wolfram Schlenker & Adam Sobel, 2013. "Using Weather Data and Climate Model Output in Economic Analyses of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(2), pages 181-198, July.
    42. Schelling, Thomas C, 1992. "Some Economics of Global Warming," American Economic Review, American Economic Association, vol. 82(1), pages 1-14, March.
    43. Thomas Barnebeck Andersen & Carl-Johan Dalgaard & Pablo Selaya, 2016. "Climate and the Emergence of Global Income Differences," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 83(4), pages 1334-1363.
    44. Martin L. Weitzman, 2010. "What Is The "Damages Function" For Global Warming — And What Difference Might It Make?," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 1(01), pages 57-69.
    45. Martin L. Weitzman, 2011. "Fat-Tailed Uncertainty in the Economics of Catastrophic Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(2), pages 275-292, Summer.
    46. Harris, Richard D. F. & Tzavalis, Elias, 1999. "Inference for unit roots in dynamic panels where the time dimension is fixed," Journal of Econometrics, Elsevier, vol. 91(2), pages 201-226, August.
    47. Gallup, John & Sachs, Jeffrey, 1999. "Geography and Economic Development," Harvard Institute for International Development (HIID) Papers 294434, Harvard University, Kennedy School of Government.
    48. Mundlak, Yair, 1978. "On the Pooling of Time Series and Cross Section Data," Econometrica, Econometric Society, vol. 46(1), pages 69-85, January.
    49. Richard S. J. Tol & Gary W. Yohe, 2006. "A Review of the Stern Review," World Economics, World Economics, 1 Ivory Square, Plantation Wharf, London, United Kingdom, SW11 3UE, vol. 7(4), pages 233-250, October.
    50. William D. Nordhaus, 2007. "A Review of the Stern Review on the Economics of Climate Change," Journal of Economic Literature, American Economic Association, vol. 45(3), pages 686-702, September.
    51. Frances C. Moore & Delavane B. Diaz, 2015. "Erratum: Temperature impacts on economic growth warrant stringent mitigation policy," Nature Climate Change, Nature, vol. 5(3), pages 280-280, March.
    52. Conley, T. G., 1999. "GMM estimation with cross sectional dependence," Journal of Econometrics, Elsevier, vol. 92(1), pages 1-45, September.
    53. Elisabeth J. Moyer & Mark D. Woolley & Nathan J. Matteson & Michael J. Glotter & David A. Weisbach, 2014. "Climate Impacts on Economic Growth as Drivers of Uncertainty in the Social Cost of Carbon," The Journal of Legal Studies, University of Chicago Press, vol. 43(2), pages 401-425.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Letta, Marco & Montalbano, Pierluigi & Tol, Richard S.J., 2018. "Temperature shocks, short-term growth and poverty thresholds: Evidence from rural Tanzania," World Development, Elsevier, vol. 112(C), pages 13-32.
    2. Richard S J Tol, 2018. "The Economic Impacts of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 4-25.
    3. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    4. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    5. Li Chen & Bin Jiang & Chuan Wang, 2023. "Climate change and urban total factor productivity: evidence from capital cities and municipalities in China," Empirical Economics, Springer, vol. 65(1), pages 401-441, July.
    6. Franziska Piontek & Matthias Kalkuhl & Elmar Kriegler & Anselm Schultes & Marian Leimbach & Ottmar Edenhofer & Nico Bauer, 2019. "Economic Growth Effects of Alternative Climate Change Impact Channels in Economic Modeling," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1357-1385, August.
    7. Tsigaris, Panagiotis & Wood, Joel, 2019. "The potential impacts of climate change on capital in the 21st century," Ecological Economics, Elsevier, vol. 162(C), pages 74-86.
    8. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.T., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," Ecological Economics, Elsevier, vol. 197(C).
    9. Song, Yanwu & Wang, Can & Wang, Zhaohua, 2023. "Climate risk, institutional quality, and total factor productivity," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    10. Richard S. J. Tol, 2021. "The Economic Impact of Climate in the Long Run," World Scientific Book Chapters, in: Anil Markandya & Dirk Rübbelke (ed.), CLIMATE AND DEVELOPMENT, chapter 1, pages 3-36, World Scientific Publishing Co. Pte. Ltd..
    11. David Castells-Quintana & Maria del Pilar Lopez-Uribe & Tom McDermott, 2015. "Climate change and the geographical and institutional drivers of economic development," GRI Working Papers 198, Grantham Research Institute on Climate Change and the Environment.
    12. Lopez-Uribe, Maria del Pilar & Castells-Quintana, David & McDermott, Thomas K. J., 2017. "Geography, institutions and development: a review ofthe long-run impacts of climate change," LSE Research Online Documents on Economics 65147, London School of Economics and Political Science, LSE Library.
    13. Hjort, Ingrid, 2016. "Potential Climate Risks in Financial Markets: A Literature Overview," Memorandum 01/2016, Oslo University, Department of Economics.
    14. Tsigaris, Panagiotis & Wood, Joel, 2016. "A simple climate-Solow model for introducing the economics of climate change to undergraduate students," International Review of Economics Education, Elsevier, vol. 23(C), pages 65-81.
    15. Kahn, Matthew E. & Mohaddes, Kamiar & Ng, Ryan N.C. & Pesaran, M. Hashem & Raissi, Mehdi & Yang, Jui-Chung, 2021. "Long-term macroeconomic effects of climate change: A cross-country analysis," Energy Economics, Elsevier, vol. 104(C).
    16. Lamperti, F. & Dosi, G. & Napoletano, M. & Roventini, A. & Sapio, A., 2018. "Faraway, So Close: Coupled Climate and Economic Dynamics in an Agent-based Integrated Assessment Model," Ecological Economics, Elsevier, vol. 150(C), pages 315-339.
    17. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.t., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," LSE Research Online Documents on Economics 114941, London School of Economics and Political Science, LSE Library.
    18. Bennett, Daniel L. & Faria, Hugo J. & Gwartney, James D. & Morales, Daniel R., 2017. "Economic Institutions and Comparative Economic Development: A Post-Colonial Perspective," World Development, Elsevier, vol. 96(C), pages 503-519.
    19. Oumer, Abdella & Maseland, Robbert & Garretsen, Harry, 2020. "Was de Montesquieu (only half) right? Evidence for a stronger work ethic in cold climates," Journal of Economic Behavior & Organization, Elsevier, vol. 173(C), pages 256-269.
    20. Gregory Casey & Stephie Fried & Ethan Goode, 2023. "Projecting the Impact of Rising Temperatures: The Role of Macroeconomic Dynamics," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(3), pages 688-718, September.

    More about this item

    Keywords

    Weather variability; Climate change; Total factor productivity; Economic growth;
    All these keywords.

    JEL classification:

    • O44 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Environment and Growth
    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:73:y:2019:i:1:d:10.1007_s10640-018-0262-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.