IDEAS home Printed from https://ideas.repec.org/a/kap/enreec/v6y1995i2p119-138.html
   My bibliography  Save this article

Mining the soil: Agricultural production system on peatland

Author

Listed:
  • Renan Goetz
  • David Zilberman

Abstract

Soil is usually considered as a renewable resource for dynamic crop and production management decision problems. For peatland, however, soil should be regarded as an exhaustible resource. This paper determines the optimal utilization of peatland for agricultural production within a dynamic context and it also presents an empirical study where the quasirent function is convex in the input and not concave as assumed in many economic studies. As a result of this convexity a corner solution is obtained. Moreover, the study demonstrates that there is only a slight difference between short- and farsighted behavior, and that both lead ultimately to an accelerated exhaustion of the resource. Private optimization leads to intensive use of the peat in the production of high value crops, which depletes the peat in a relatively short period of time. However, peatland also possesses a value as an environmental asset. The study provides a benchmark for the decision as to whether to convert peatland into productive agricultural land or to conserve it. Copyright Kluwer Academic Publishers 1995

Suggested Citation

  • Renan Goetz & David Zilberman, 1995. "Mining the soil: Agricultural production system on peatland," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 6(2), pages 119-138, September.
  • Handle: RePEc:kap:enreec:v:6:y:1995:i:2:p:119-138
    DOI: 10.1007/BF00691680
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF00691680
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF00691680?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John A. Miranowski, 1984. "Impacts of Productivity Loss on Crop Production and Management in a Dynamic Economic Model," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 66(1), pages 61-71.
    2. Caputo, Michael R., 1990. "How to do comparative dynamics on the back of an envelope in optimal control theory," Journal of Economic Dynamics and Control, Elsevier, vol. 14(3-4), pages 655-683, October.
    3. Carlson, Gerald A. & Zilberman, David & Miranowski, John, 1993. "Agricultural and Resource Economics," Staff General Research Papers Archive 11104, Iowa State University, Department of Economics.
    4. Oscar R. Burt, 1981. "Farm Level Economics of Soil Conservation in the Palouse Area of the Northwest," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 63(1), pages 83-92.
    5. Miranowski, John, 1984. "Impacts of Productivity Loss on Crop Production and Management in a Dynamic Economic Model," Staff General Research Papers Archive 10708, Iowa State University, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ekbom, Anders & Brown, Gardner M. & Sterner, Thomas, 2009. "Muddy Waters: Soil Erosion and Downstream Externalities," Working Papers in Economics 341, University of Gothenburg, Department of Economics.
    2. Goetz, Renan, 1995. "Diversification and Sustainable Agricultural Production-The Case of Soil Erosion," CUDARE Working Papers 201477, University of California, Berkeley, Department of Agricultural and Resource Economics.
    3. Smith, Elwin G. & Lerohl, Mel L. & Messele, Teklay, 1999. "Optimum Soil Quality Attribute Levels And Values," 1999 Annual Meeting, July 11-14, 1999, Fargo, ND 35697, Western Agricultural Economics Association.
    4. J. Salerian, 1989. "Application of an Economic Model to Dryland Soil Salinity in Western Australia," Economics Discussion / Working Papers 89-25, The University of Western Australia, Department of Economics.
    5. Paudel, Krishna P. & Lohr, Luanne, 1998. "Dynamic Analysis Of A Residue Management System In Cotton," 1998 Annual meeting, August 2-5, Salt Lake City, UT 20794, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    6. Gary R. Vieth & Herath Gunatilake & Linda J. Cox, 2001. "Economics of Soil Conservation: The Upper Mahaweli Watershed of Sir Lanka," Journal of Agricultural Economics, Wiley Blackwell, vol. 52(1), pages 139-152, January.
    7. Paudel, Krishna P. & Lohr, Luanne, 1998. "Dynamic Economic Analysis Of A Residue Management System In Cotton," Faculty Series 16677, University of Georgia, Department of Agricultural and Applied Economics.
    8. Babcock, Bruce A. & Secchi, Silvia, 1999. "Managing Pest Resistance: The Potential Of Crop Rotations And Shredding," 1999 Annual meeting, August 8-11, Nashville, TN 21597, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    9. Ventura-Lucas, Maria Raquel & Godinho, Maria de Lurdes Ferro & Fragoso, Rui Manuel de Sousa, 2002. "The Evolution of the Agri-Environmental Policies and Sustainable Agriculture," 2002 International Congress, August 28-31, 2002, Zaragoza, Spain 24956, European Association of Agricultural Economists.
    10. Hertzler, Greg & Barton, John, 1992. "Dynamic Model of Dryland Salinity Abatement," Discussion Papers 232285, University of Western Australia, School of Agricultural and Resource Economics.
    11. Martin, William E. & Seitz, Wesley D., 1991. "The Search for an Optimal U.S. Agricultural Water Quality Policy," 1991 Annual Meeting, August 4-7, Manhattan, Kansas 271213, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    12. Passmore, J.G. & Brown, Colin G., 1991. "Analysis Of Rangeland Degradation Using Stochastic Dynamic Programming," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 35(2), pages 1-27, August.
    13. Smith, Elwin G. & Lerohl, Mel L. & Messele, Teklay & Janzen, H. Henry, 2000. "Soil Quality Attribute Time Paths: Optimal Levels And Values," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 25(1), pages 1-18, July.
    14. Hendricks, Nathan P. & Sinnathamby, Sumathy & Douglas-Mankin, Kyle & Smith, Aaron & Sumner, Daniel A. & Earnhart, Dietrich H., 2014. "The environmental effects of crop price increases: Nitrogen losses in the U.S. Corn Belt," Journal of Environmental Economics and Management, Elsevier, vol. 68(3), pages 507-526.
    15. Ananda, Jayanath & Herath, Gamini & Chisholm, Anthony H., 2001. "Determination of yield and erosion damage functions using subjectively elicited data: application to smallholder tea in Sri Lanka," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 45(2), pages 1-15.
    16. O'Shea, Lucy & Ulph, Alistair, 2008. "The role of pest resistance in biotechnology R&D investment strategy," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 213-228, March.
    17. Chen, Ming & Karp, Larry S., 2001. "Environmental Indices for the Chinese Grain Sector," CUDARE Working Papers 6259, University of California, Berkeley, Department of Agricultural and Resource Economics.
    18. Hoag, Dana L., 1998. "The intertemporal impact of soil erosion on non-uniform soil profiles: A new direction in analyzing erosion impacts," Agricultural Systems, Elsevier, vol. 56(4), pages 415-429, April.
    19. Krysiak, Frank C., 2006. "Stochastic intertemporal duality: An application to investment under uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 30(8), pages 1363-1387, August.
    20. Pagoulatos, Angelos & Debertin, David L. & Sjarkowi, Fachurrozi, 1989. "Soil Erosion, Intertemporal Profit, and the Soil Conservation Decision," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 21(2), pages 55-62, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:6:y:1995:i:2:p:119-138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.