IDEAS home Printed from https://ideas.repec.org/a/kap/enreec/v62y2015i3p615-635.html
   My bibliography  Save this article

Endogenous Growth with a Ceiling on the Stock of Pollution

Author

Listed:
  • Gilbert Kollenbach

Abstract

The effects of an agreement such as the Kyoto Protocol, which implicitly imposes a ceiling on the stock of pollution, have recently been studied in Hotelling models. We add pollution and a ceiling to the endogenous growth model of Tsur and Zemel (J Environ Econ Manag 49(3):484–499, 2005 ) to study the effects of the ceiling (and pollution) on capital and research investments. In the short run, the ceiling adds an additional scarcity to the one induced by the limited fossil fuel stock. Ceteris paribus, the extraction rate of cheap fossil fuel is reduced and backstop utilization boosted. This increases energy costs (energy cost effect) and makes R&D more beneficial compared with capital accumulation (research effect). R&D investments may increase, depending on capital endowment and the strength of the two effects. The sum of R&D and capital investments is affected, as both effects change disposable production. In the long-run, i.e. after the exhaustion of limited resources, the shape of the evolution path can be only affected by the ceiling, if the capital endowment is sufficiently large. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Gilbert Kollenbach, 2015. "Endogenous Growth with a Ceiling on the Stock of Pollution," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(3), pages 615-635, November.
  • Handle: RePEc:kap:enreec:v:62:y:2015:i:3:p:615-635
    DOI: 10.1007/s10640-014-9832-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10640-014-9832-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10640-014-9832-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yacov Tsur & Amos Zemel, 2009. "Endogenous Discounting and Climate Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 44(4), pages 507-520, December.
    2. Prieur, Fabien & Tidball, Mabel & Withagen, Cees, 2013. "Optimal emission-extraction policy in a world of scarcity and irreversibility," Resource and Energy Economics, Elsevier, vol. 35(4), pages 637-658.
    3. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(1), pages 65-94.
    4. Joseph E. Stiglitz, 1974. "Growth with Exhaustible Natural Resources: The Competitive Economy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 139-152.
    5. Eichner, Thomas & Pethig, Ru¨diger, 2013. "Flattening the carbon extraction path in unilateral cost-effective action," Journal of Environmental Economics and Management, Elsevier, vol. 66(2), pages 185-201.
    6. Robert J. Barro & Xavier Sala-i-Martin, 2003. "Economic Growth, 2nd Edition," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262025531, April.
    7. Michael Hoel, 2011. "The Supply Side of CO 2 with Country Heterogeneity," Scandinavian Journal of Economics, Wiley Blackwell, vol. 113(4), pages 846-865, December.
    8. Tsur, Yacov & Zemel, Amos, 2005. "Scarcity, growth and R&D," Journal of Environmental Economics and Management, Elsevier, vol. 49(3), pages 484-499, May.
    9. Francisco L. Rivera-Batiz & Luis A. Rivera-Batiz, 2018. "Economic Integration and Endogenous Growth," World Scientific Book Chapters, in: Francisco L Rivera-Batiz & Luis A Rivera-Batiz (ed.), International Trade, Capital Flows and Economic Development, chapter 1, pages 3-32, World Scientific Publishing Co. Pte. Ltd..
    10. Chakravorty, Ujjayant & Magne, Bertrand & Moreaux, Michel, 2006. "A Hotelling model with a ceiling on the stock of pollution," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2875-2904, December.
    11. Joseph Stiglitz, 1974. "Growth with Exhaustible Natural Resources: Efficient and Optimal Growth Paths," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 123-137.
    12. Chakravorty, Ujjayant & Leach, Andrew & Moreaux, Michel, 2012. "Cycles in nonrenewable resource prices with pollution and learning-by-doing," Journal of Economic Dynamics and Control, Elsevier, vol. 36(10), pages 1448-1461.
    13. Ujjayant Chakravorty & Michel Moreaux & Mabel Tidball, 2008. "Ordering the Extraction of Polluting Nonrenewable Resources," American Economic Review, American Economic Association, vol. 98(3), pages 1128-1144, June.
    14. Fabien Prieur & Mabel Tidball & Cees Withagen, 2013. "Optimal extraction-emission policy in a world of scarcity and irreversibility," Post-Print hal-01549824, HAL.
    15. Ujjayant Chakravorty & Bertrand Magne & Michel Moreaux, 2006. "Plafond de concentration en carbone et substitutions entre ressources énergétiques," Annals of Economics and Statistics, GENES, issue 81, pages 141-168.
    16. Lafforgue, Gilles & Magné, Bertrand & Moreaux, Michel, 2006. "Optimal Sequestration Policy with a Ceiling on the Stock of Carbon in the Atmosphere," IDEI Working Papers 401, Institut d'Économie Industrielle (IDEI), Toulouse.
    17. Guruswamy Babu, P. & Kavi Kumar, K. S. & Murthy, N. S., 1997. "An overlapping generations model with exhaustible resources and stock pollution," Ecological Economics, Elsevier, vol. 21(1), pages 35-43, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kollenbach, Gilbert, 2017. "On the optimal accumulation of renewable energy generation capacity," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 157-179.
    2. Kollenbach, Gilbert, 2017. "Unilateral climate Policy and the Green Paradox: Extraction Costs matter," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168245, Verein für Socialpolitik / German Economic Association.
    3. Fanny Henriet & Katheline Schubert, 2019. "Is Shale Gas a Good Bridge to Renewables? An Application to Europe," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(3), pages 721-762, March.
    4. Gilbert Kollenbach, 2017. "Endogenous growth with a limited fossil fuel extraction capacity," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 50(1), pages 233-272, February.
    5. Thomas Eichner & Gilbert Kollenbach & Mark Schopf, 2023. "Demand- Versus Supply-Side Climate Policies with a Carbon Dioxide Ceiling," The Economic Journal, Royal Economic Society, vol. 133(652), pages 1371-1406.
    6. Gilbert Kollenbach, 2019. "Unilateral climate policy and the green paradox: Extraction costs matter," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 52(3), pages 1036-1083, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kollenbach, Gilbert, 2013. "Endogenous Growth with a Ceiling on the Stock of Pollution," MPRA Paper 50641, University Library of Munich, Germany.
    2. Kollenbach, Gilbert, 2015. "Abatement, R&D and growth with a pollution ceiling," Journal of Economic Dynamics and Control, Elsevier, vol. 54(C), pages 1-16.
    3. Gilbert Kollenbach, 2019. "Unilateral climate policy and the green paradox: Extraction costs matter," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 52(3), pages 1036-1083, August.
    4. Prudence Dato, 2017. "Energy Transition Under Irreversibility: A Two-Sector Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(3), pages 797-820, November.
    5. Thomas Eichner & Gilbert Kollenbach & Mark Schopf, 2023. "Demand- Versus Supply-Side Climate Policies with a Carbon Dioxide Ceiling," The Economic Journal, Royal Economic Society, vol. 133(652), pages 1371-1406.
    6. Kollenbach, Gilbert, 2017. "Unilateral climate Policy and the Green Paradox: Extraction Costs matter," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168245, Verein für Socialpolitik / German Economic Association.
    7. Kollenbach, Gilbert, 2017. "On the optimal accumulation of renewable energy generation capacity," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 157-179.
    8. Renaud Coulomb & Oskar Lecuyer & Adrien Vogt-Schilb, 2019. "Optimal Transition from Coal to Gas and Renewable Power Under Capacity Constraints and Adjustment Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 557-590, June.
    9. Amigues, Jean-Pierre & Lafforgue, Gilles & Moreaux, Michel, 2016. "Optimal timing of carbon capture policies under learning-by-doing," Journal of Environmental Economics and Management, Elsevier, vol. 78(C), pages 20-37.
    10. Frederick Van Der Ploeg & Cees Withagen, 2014. "Growth, Renewables, And The Optimal Carbon Tax," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55(1), pages 283-311, February.
    11. Jin, Wei, 2021. "Path dependence, self-fulfilling expectations, and carbon lock-in," Resource and Energy Economics, Elsevier, vol. 66(C).
    12. Burda, Michael C. & Zessner-Spitzenberg, Leopold, 2024. "Greenhouse Gas Mitigation and Price-Driven Growth in a Solow-Swan Economy with an Environmental Limit," IZA Discussion Papers 16771, Institute of Labor Economics (IZA).
    13. Lafforgue, Gilles & Magné, Bertrand & Moreaux, Michel, 2008. "Energy substitutions, climate change and carbon sinks," Ecological Economics, Elsevier, vol. 67(4), pages 589-597, November.
    14. Maciej Malaczewski, 2018. "Natural Resources As An Energy Source In A Simple Economic Growth Model," Bulletin of Economic Research, Wiley Blackwell, vol. 70(4), pages 362-380, October.
    15. Germain, Marc, 2019. "Georgescu-Roegen versus Solow/Stiglitz: Back to a controversy," Ecological Economics, Elsevier, vol. 160(C), pages 168-182.
    16. Jin, Wei & Shi, Xunpeng & Zhang, Lin, 2021. "Energy transition without dirty capital stranding," Energy Economics, Elsevier, vol. 102(C).
    17. Destek, Mehmet Akif & Hossain, Mohammad Razib & Aydın, Sercan & Shakib, Mohammed & Destek, Gamze, 2023. "Investigating the role of economic complexity in evading the resource curse," Resources Policy, Elsevier, vol. 86(PB).
    18. Quentin Couix, 2019. "Natural resources in the theory of production: the Georgescu-Roegen/Daly versus Solow/Stiglitz controversy," The European Journal of the History of Economic Thought, Taylor & Francis Journals, vol. 26(6), pages 1341-1378, November.
    19. Lizhan Cao & Zhongying Qi, 2017. "Theoretical Explanations for the Inverted-U Change of Historical Energy Intensity," Sustainability, MDPI, vol. 9(6), pages 1-19, June.
    20. Amigues, Jean-Pierre & Moreaux, Michel, 2013. "The atmospheric carbon resilience problem: A theoretical analysis," Resource and Energy Economics, Elsevier, vol. 35(4), pages 618-636.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:62:y:2015:i:3:p:615-635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.