IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v64y2024i2d10.1007_s10614-023-10470-8.html
   My bibliography  Save this article

N-BEATS Perceiver: A Novel Approach for Robust Cryptocurrency Portfolio Forecasting

Author

Listed:
  • Attilio Sbrana

    (Aeronautics Institute of Technology (ITA))

  • Paulo André Lima de Castro

    (Aeronautics Institute of Technology (ITA))

Abstract

In this paper, we propose a novel approach for forecasting cryptocurrency portfolios, harnessing modified versions of the N-BEATS deep learning architecture, integrated with convolutional network layers, Transformer mechanisms, and the Mish activation function. Our thorough evaluation, featuring an extensive sample size exceeding 4 million portfolio test samples, shows these variations outperforming traditional and other deep learning forecasting methods across various metrics. Particularly noteworthy is our N-BEATS Perceiver model, a Transformer-based variation, which not only delivers superior forecast accuracy but also exhibits a robust risk profile with less downside. Furthermore, the model performs exceptionally well under the TOPSIS method across a broad spectrum of portfolio evaluation parameters, making it a valuable asset for both portfolio selection and risk management in the dynamic cryptocurrency market.

Suggested Citation

  • Attilio Sbrana & Paulo André Lima de Castro, 2024. "N-BEATS Perceiver: A Novel Approach for Robust Cryptocurrency Portfolio Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 1047-1081, August.
  • Handle: RePEc:kap:compec:v:64:y:2024:i:2:d:10.1007_s10614-023-10470-8
    DOI: 10.1007/s10614-023-10470-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-023-10470-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-023-10470-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chuen Yik Kang & Chin Poo Lee & Kian Ming Lim, 2022. "Cryptocurrency Price Prediction with Convolutional Neural Network and Stacked Gated Recurrent Unit," Data, MDPI, vol. 7(11), pages 1-13, October.
    2. Georgios Tzagkarakis & Frantz Maurer, 2022. "Horizon-Adaptive Extreme Risk Quantification for Cryptocurrency Assets," Post-Print hal-03953953, HAL.
    3. Stephen Chan & Saralees Nadarajah, 2019. "Risk: An R Package for Financial Risk Measures," Computational Economics, Springer;Society for Computational Economics, vol. 53(4), pages 1337-1351, April.
    4. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & David Martinez-Rego & Fan Wu & Lingbo Li, 2022. "Cryptocurrency trading: a comprehensive survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-59, December.
    5. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & Lingbo Li & David Martinez-Regoband & Fan Wu, 2020. "Cryptocurrency Trading: A Comprehensive Survey," Papers 2003.11352, arXiv.org, revised Jan 2022.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Husam Rjoub & Tomiwa Sunday Adebayo & Dervis Kirikkaleli, 2023. "Blockchain technology-based FinTech banking sector involvement using adaptive neuro-fuzzy-based K-nearest neighbors algorithm," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-23, December.
    2. Laurens Swinkels, 2023. "Empirical evidence on the ownership and liquidity of real estate tokens," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-29, December.
    3. Luyao Zhang & Tianyu Wu & Saad Lahrichi & Carlos-Gustavo Salas-Flores & Jiayi Li, 2022. "A Data Science Pipeline for Algorithmic Trading: A Comparative Study of Applications for Finance and Cryptoeconomics," Papers 2206.14932, arXiv.org.
    4. Kirimhan, Destan, 2023. "Importance of anti-money laundering regulations among prosumers for a cybersecure decentralized finance," Journal of Business Research, Elsevier, vol. 157(C).
    5. Kate Murray & Andrea Rossi & Diego Carraro & Andrea Visentin, 2023. "On Forecasting Cryptocurrency Prices: A Comparison of Machine Learning, Deep Learning, and Ensembles," Forecasting, MDPI, vol. 5(1), pages 1-14, January.
    6. Wujun Lv & Tao Pang & Xiaobao Xia & Jingzhou Yan, 2023. "Dynamic portfolio choice with uncertain rare-events risk in stock and cryptocurrency markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-28, December.
    7. Bennett, Donyetta & Mekelburg, Erik & Williams, T.H., 2023. "BeFi meets DeFi: A behavioral finance approach to decentralized finance asset pricing," Research in International Business and Finance, Elsevier, vol. 65(C).
    8. Walid Mensi & Mariya Gubareva & Hee-Un Ko & Xuan Vinh Vo & Sang Hoon Kang, 2023. "Tail spillover effects between cryptocurrencies and uncertainty in the gold, oil, and stock markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-27, December.
    9. Riccardo Blasis & Luca Galati & Alexander Webb & Robert I. Webb, 2023. "Intelligent design: stablecoins (in)stability and collateral during market turbulence," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-23, December.
    10. Waqas Hanif & Hee-Un Ko & Linh Pham & Sang Hoon Kang, 2023. "Dynamic connectedness and network in the high moments of cryptocurrency, stock, and commodity markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-40, December.
    11. Danilo Bazzanella & Andrea Gangemi, 2023. "Bitcoin: a new proof-of-work system with reduced variance," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-14, December.
    12. Mingbo Zheng & Gen-Fu Feng & Xinxin Zhao & Chun-Ping Chang, 2023. "The transaction behavior of cryptocurrency and electricity consumption," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-18, December.
    13. Tina Linden & Tina Shirazi, 2023. "Markets in crypto-assets regulation: Does it provide legal certainty and increase adoption of crypto-assets?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-30, December.
    14. Berend Jelmer Dirk Gort & Xiao-Yang Liu & Xinghang Sun & Jiechao Gao & Shuaiyu Chen & Christina Dan Wang, 2022. "Deep Reinforcement Learning for Cryptocurrency Trading: Practical Approach to Address Backtest Overfitting," Papers 2209.05559, arXiv.org, revised Jan 2023.
    15. Zhiqi Feng & Yongli Li & Xiaochen Ma, 2023. "Blockchain-oriented approach for detecting cyber-attack transactions," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-38, December.
    16. Felföldi-Szűcs, Nóra & Králik, Balázs & Váradi, Kata, 2024. "Put–call parity in a crypto option market — Evidence from Binance," Finance Research Letters, Elsevier, vol. 61(C).
    17. Elli Kraizberg, 2023. "Non-fungible tokens: a bubble or the end of an era of intellectual property rights," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-20, December.
    18. Elie Bouri & Afees A. Salisu & Rangan Gupta, 2023. "The predictive power of Bitcoin prices for the realized volatility of US stock sector returns," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-22, December.
    19. Haji Suleman Ali & Feiyan Jia & Zhiyuan Lou & Jingui Xie, 2023. "Effect of blockchain technology initiatives on firms’ market value," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-35, December.
    20. Rubaiyat Ahsan Bhuiyan & Afzol Husain & Changyong Zhang, 2023. "Diversification evidence of bitcoin and gold from wavelet analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-36, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:64:y:2024:i:2:d:10.1007_s10614-023-10470-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.