IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03953953.html
   My bibliography  Save this paper

Horizon-Adaptive Extreme Risk Quantification for Cryptocurrency Assets

Author

Listed:
  • Georgios Tzagkarakis

    (IRGO - Institut de Recherche en Gestion des Organisations - UB - Université de Bordeaux - Institut d'Administration des Entreprises (IAE) - Bordeaux)

  • Frantz Maurer

    (IRGO - Institut de Recherche en Gestion des Organisations - UB - Université de Bordeaux - Institut d'Administration des Entreprises (IAE) - Bordeaux)

Abstract

Risk quantification for cryptocurrency assets is a challenging task due to their speculative nature and strongly heavy-tailed returns. Existing measures of tail risk are based primarily on the variability of extreme returns, whilst ignoring the multiple biases occurring at distinct frequencies other than the original sampling frequency. As such, they often fail to adapt to specific investment horizons and also account for the inherent microstructure frictions of cryptocurrency returns. To address this problem, we propose a novel extreme risk measure which (i) regularizes the variability of extreme returns with a confidence interval where they have a likelihood of occurring, and (ii) adapts precisely to a predefined investment horizon. To this end, we leverage the power of alpha-stable models for defining a proper confidence interval with the effectiveness of wavelet analysis for decomposing the returns at multiple frequencies. An empirical evaluation with major cryptocurrencies demonstrates improved performance of our extreme risk measure against commonly used measures based on extreme expectiles and light-tailed models.

Suggested Citation

  • Georgios Tzagkarakis & Frantz Maurer, 2022. "Horizon-Adaptive Extreme Risk Quantification for Cryptocurrency Assets," Post-Print hal-03953953, HAL.
  • Handle: RePEc:hal:journl:hal-03953953
    DOI: 10.1007/s10614-022-10300-3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03953953. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.