IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2209.05559.html
   My bibliography  Save this paper

Deep Reinforcement Learning for Cryptocurrency Trading: Practical Approach to Address Backtest Overfitting

Author

Listed:
  • Berend Jelmer Dirk Gort
  • Xiao-Yang Liu
  • Xinghang Sun
  • Jiechao Gao
  • Shuaiyu Chen
  • Christina Dan Wang

Abstract

Designing profitable and reliable trading strategies is challenging in the highly volatile cryptocurrency market. Existing works applied deep reinforcement learning methods and optimistically reported increased profits in backtesting, which may suffer from the false positive issue due to overfitting. In this paper, we propose a practical approach to address backtest overfitting for cryptocurrency trading using deep reinforcement learning. First, we formulate the detection of backtest overfitting as a hypothesis test. Then, we train the DRL agents, estimate the probability of overfitting, and reject the overfitted agents, increasing the chance of good trading performance. Finally, on 10 cryptocurrencies over a testing period from 05/01/2022 to 06/27/2022 (during which the crypto market crashed two times), we show that the less overfitted deep reinforcement learning agents have a higher return than that of more overfitted agents, an equal weight strategy, and the S&P DBM Index (market benchmark), offering confidence in possible deployment to a real market.

Suggested Citation

  • Berend Jelmer Dirk Gort & Xiao-Yang Liu & Xinghang Sun & Jiechao Gao & Shuaiyu Chen & Christina Dan Wang, 2022. "Deep Reinforcement Learning for Cryptocurrency Trading: Practical Approach to Address Backtest Overfitting," Papers 2209.05559, arXiv.org, revised Jan 2023.
  • Handle: RePEc:arx:papers:2209.05559
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2209.05559
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nava, Noemi & Di Matteo, Tiziana & Aste, Tomaso, 2016. "Time-dependent scaling patterns in high frequency financial data," LSE Research Online Documents on Economics 68645, London School of Economics and Political Science, LSE Library.
    2. Xinyi Li & Yinchuan Li & Yuancheng Zhan & Xiao-Yang Liu, 2019. "Optimistic Bull or Pessimistic Bear: Adaptive Deep Reinforcement Learning for Stock Portfolio Allocation," Papers 1907.01503, arXiv.org.
    3. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444606, September.
    4. Gerritsen, Dirk F. & Bouri, Elie & Ramezanifar, Ehsan & Roubaud, David, 2020. "The profitability of technical trading rules in the Bitcoin market," Finance Research Letters, Elsevier, vol. 34(C).
    5. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & David Martinez-Rego & Fan Wu & Lingbo Li, 2022. "Cryptocurrency trading: a comprehensive survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-59, December.
    6. Zechu Li & Xiao-Yang Liu & Jiahao Zheng & Zhaoran Wang & Anwar Walid & Jian Guo, 2021. "FinRL-Podracer: High Performance and Scalable Deep Reinforcement Learning for Quantitative Finance," Papers 2111.05188, arXiv.org.
    7. Yukun Liu & Aleh Tsyvinski, 2021. "Risks and Returns of Cryptocurrency," The Review of Financial Studies, Society for Financial Studies, vol. 34(6), pages 2689-2727.
    8. Alan Moreira & Tyler Muir, 2017. "Volatility-Managed Portfolios," Journal of Finance, American Finance Association, vol. 72(4), pages 1611-1644, August.
    9. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444590, September.
    10. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & Lingbo Li & David Martinez-Regoband & Fan Wu, 2020. "Cryptocurrency Trading: A Comprehensive Survey," Papers 2003.11352, arXiv.org, revised Jan 2022.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bennett, Donyetta & Mekelburg, Erik & Williams, T.H., 2023. "BeFi meets DeFi: A behavioral finance approach to decentralized finance asset pricing," Research in International Business and Finance, Elsevier, vol. 65(C).
    2. Youssef El-Khatib & Abdulnasser Hatemi-J, 2023. "On a regime switching illiquid high volatile prediction model for cryptocurrencies," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 51(2), pages 485-498, July.
    3. Mary Amiti & Jozef Konings, 2007. "Trade Liberalization, Intermediate Inputs, and Productivity: Evidence from Indonesia," American Economic Review, American Economic Association, vol. 97(5), pages 1611-1638, December.
    4. Richard V. Burkhauser & Shuaizhang Feng & Stephen P. Jenkins, 2009. "Using The P90/P10 Index To Measure U.S. Inequality Trends With Current Population Survey Data: A View From Inside The Census Bureau Vaults," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 55(1), pages 166-185, March.
    5. Federico Di Pace & Matthias Hertweck, 2019. "Labor Market Frictions, Monetary Policy, and Durable Goods," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 32, pages 274-304, April.
    6. Steven T Berry & Giovanni Compiani, 2023. "An Instrumental Variable Approach to Dynamic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(4), pages 1724-1758.
    7. repec:hal:wpspec:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    8. repec:wyi:journl:002087 is not listed on IDEAS
    9. Federico Ciliberto & Elie Tamer, 2009. "Market Structure and Multiple Equilibria in Airline Markets," Econometrica, Econometric Society, vol. 77(6), pages 1791-1828, November.
    10. Michelacci, Claudio & Zaffaroni, Paolo, 2000. "(Fractional) beta convergence," Journal of Monetary Economics, Elsevier, vol. 45(1), pages 129-153, February.
    11. Ahn, JaeBin & Choi, Moon Jung, 2020. "From firm-level imports to aggregate productivity: Evidence from Korean manufacturing firm data," Japan and the World Economy, Elsevier, vol. 56(C).
    12. van Soest, A.H.O. & Das, J.W.M., 2000. "Family Labor Supply and Proposed Tax Reforms in the Netherlands," Discussion Paper 2000-20, Tilburg University, Center for Economic Research.
    13. Stefan Boes, 2013. "Nonparametric analysis of treatment effects in ordered response models," Empirical Economics, Springer, vol. 44(1), pages 81-109, February.
    14. Juan M. Contreras & Sven H. Sinclair, 2008. "The Labor Supply Response in Macroeconomic Models: Working Paper 2008-07," Working Papers 20141, Congressional Budget Office.
    15. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    16. Manuel Arellano & Stéphane Bonhomme, 2017. "Quantile Selection Models With an Application to Understanding Changes in Wage Inequality," Econometrica, Econometric Society, vol. 85, pages 1-28, January.
    17. Antonella Trigari, 2006. "The Role of Search Frictions and Bargaining for Inflation Dynamics," Working Papers 304, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    18. Pierre Perron & Zhongjun Qu, 2007. "An Analytical Evaluation of the Log-periodogram Estimate in the Presence of Level Shifts," Boston University - Department of Economics - Working Papers Series wp2007-044, Boston University - Department of Economics.
    19. Antonella Trigari, 2009. "Equilibrium Unemployment, Job Flows, and Inflation Dynamics," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(1), pages 1-33, February.
    20. Philip Trostel & Ian Walker, 2006. "Education and Work," Education Economics, Taylor & Francis Journals, vol. 14(4), pages 377-399.
    21. Beverly Lapham & Hiroyuki Kasahara, 2005. "Import Protection as Export Destruction," 2005 Meeting Papers 528, Society for Economic Dynamics.
    22. Stefano DellaVigna, 2009. "Psychology and Economics: Evidence from the Field," Journal of Economic Literature, American Economic Association, vol. 47(2), pages 315-372, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2209.05559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.