IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v30y2019i2d10.1007_s10845-016-1264-4.html
   My bibliography  Save this article

Damage forecasting based on multi-factor fuzzy time series and cloud model

Author

Listed:
  • Lei Dong

    (Civil Aviation University of China)

  • Peng Wang

    (Civil Aviation University of China)

  • Fang Yan

    (Civil Aviation University of China)

Abstract

Timely and effective fault forecasting has great significance to guarantee the security of an aircraft, in view of the characteristics of harsh work environment of a flight control system. Based on the forecasting results, we can prevent damages or benefit from the forecasting activities. Fuzzy time series (FTS) forecast which provides a powerful and useful framework to deal with imprecision or ambiguity problems has been widely used in computer science. Many FTS-based forecasting models have been proposed in recent years, and thus the main problems are how to determine the useful interval length and the appropriate window basis size. In this paper, a new method based on multi-factor FTS and a cloud model was presented to predict the trend of aircraft control surface damage (ACSD). The proposed method constructs multi-factor fuzzy logical relationships based on the historical data of ACSD. To handle the uncertainty and vagueness of the ACSD historical data more appropriately, the cloud model is applied to partition the universe of discourse and to build membership functions. Furthermore, a variation forecasting method improved by the cloud model was proposed to compute the forecasting results. The experimental results prove the feasibility and its high forecasting accuracy of the proposed method.

Suggested Citation

  • Lei Dong & Peng Wang & Fang Yan, 2019. "Damage forecasting based on multi-factor fuzzy time series and cloud model," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 521-538, February.
  • Handle: RePEc:spr:joinma:v:30:y:2019:i:2:d:10.1007_s10845-016-1264-4
    DOI: 10.1007/s10845-016-1264-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-016-1264-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-016-1264-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Tai-Liang & Cheng, Ching-Hsue & Teoh, Hia-Jong, 2008. "High-order fuzzy time-series based on multi-period adaptation model for forecasting stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(4), pages 876-888.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shaohua Hu & Meixian Qu & Youcui Yuan & Zhenkai Pan, 2024. "Coupling cloud theory and concept hierarchy construction early warning thresholds for deformation safety of tailings dam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(9), pages 8827-8849, July.
    2. Eren Bas & Erol Egrioglu & Taner Tunc, 2023. "Multivariate Picture Fuzzy Time Series: New Definitions and a New Forecasting Method Based on Pi-Sigma Artificial Neural Network," Computational Economics, Springer;Society for Computational Economics, vol. 61(1), pages 139-164, January.
    3. Peng Zhan & Shaokun Wang & Jun Wang & Leigang Qu & Kun Wang & Yupeng Hu & Xueqing Li, 2021. "Temporal anomaly detection on IIoT-enabled manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1669-1678, August.
    4. Kang, Yanfei & Spiliotis, Evangelos & Petropoulos, Fotios & Athiniotis, Nikolaos & Li, Feng & Assimakopoulos, Vassilios, 2021. "Déjà vu: A data-centric forecasting approach through time series cross-similarity," Journal of Business Research, Elsevier, vol. 132(C), pages 719-731.
    5. Meira, Erick & Cyrino Oliveira, Fernando Luiz & Jeon, Jooyoung, 2021. "Treating and Pruning: New approaches to forecasting model selection and combination using prediction intervals," International Journal of Forecasting, Elsevier, vol. 37(2), pages 547-568.
    6. Xinlong Li & Yan Ran & Genbao Zhang & Yan He, 2020. "A failure mode and risk assessment method based on cloud model," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1339-1352, August.
    7. Xiao-kang Wang & Sheng-hui Wang & Hong-yu Zhang & Jian-qiang Wang & Lin Li, 2021. "The Recommendation Method for Hotel Selection Under Traveller Preference Characteristics: A Cloud-Based Multi-Criteria Group Decision Support Model," Group Decision and Negotiation, Springer, vol. 30(6), pages 1433-1469, December.
    8. Athanasopoulos, George & Kourentzes, Nikolaos, 2023. "On the evaluation of hierarchical forecasts," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1502-1511.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Ching-Hsue & Wei, Liang-Ying, 2014. "A novel time-series model based on empirical mode decomposition for forecasting TAIEX," Economic Modelling, Elsevier, vol. 36(C), pages 136-141.
    2. Angelo Garangau Menezes & Saulo Martiello Mastelini, 2021. "MegazordNet: combining statistical and machine learning standpoints for time series forecasting," Papers 2107.01017, arXiv.org.
    3. Wei, Liang-Ying, 2013. "A hybrid model based on ANFIS and adaptive expectation genetic algorithm to forecast TAIEX," Economic Modelling, Elsevier, vol. 33(C), pages 893-899.
    4. Cheng, Ching-Hsue & Wei, Liang-Ying & Liu, Jing-Wei & Chen, Tai-Liang, 2013. "OWA-based ANFIS model for TAIEX forecasting," Economic Modelling, Elsevier, vol. 30(C), pages 442-448.
    5. Tai-Liang Chen, 2012. "Forecasting the Taiwan Stock Market with a Novel Momentum-based Fuzzy Time-series," Review of Economics & Finance, Better Advances Press, Canada, vol. 2, pages 38-50, February.
    6. Jinliang Zhang & YiMing Wei & Zhong-fu Tan & Wang Ke & Wei Tian, 2017. "A Hybrid Method for Short-Term Wind Speed Forecasting," Sustainability, MDPI, vol. 9(4), pages 1-10, April.
    7. Tai-Liang Chen & Ching-Hsue Cheng & Jing-Wei Liu, 2019. "A Causal Time-Series Model Based on Multilayer Perceptron Regression for Forecasting Taiwan Stock Index," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(06), pages 1967-1987, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:30:y:2019:i:2:d:10.1007_s10845-016-1264-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.