IDEAS home Printed from https://ideas.repec.org/p/arx/papers/math-0607212.html
   My bibliography  Save this paper

Time Consistent Dynamic Risk Processes, Cadlag Modification

Author

Listed:
  • Jocelyne Bion-Nadal

Abstract

Working in a continuous time setting, we extend to the general case of dynamic risk measures continuous from above the characterization of time consistency in terms of ``cocycle condition'' of the minimal penalty function. We prove also the supermartingale property for general time consistent dynamic risk measures. When the time consistent dynamic risk measure (continuous from above) is normalized and non degenerate, we prove, under a mild condition, that the dynamic risk process of any financial instrument has a cadlag modification. This condition is always satisfied in case of continuity from below.

Suggested Citation

  • Jocelyne Bion-Nadal, 2006. "Time Consistent Dynamic Risk Processes, Cadlag Modification," Papers math/0607212, arXiv.org.
  • Handle: RePEc:arx:papers:math/0607212
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/math/0607212
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Riedel, Frank, 2004. "Dynamic coherent risk measures," Stochastic Processes and their Applications, Elsevier, vol. 112(2), pages 185-200, August.
    2. Frittelli, Marco & Rosazza Gianin, Emanuela, 2002. "Putting order in risk measures," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1473-1486, July.
    3. Roorda, Berend & Schumacher, J.M., 2007. "Time consistency conditions for acceptability measures, with an application to Tail Value at Risk," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 209-230, March.
    4. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    5. Detlefsen, Kai & Scandolo, Giacomo, 2005. "Conditional and dynamic convex risk measures," SFB 649 Discussion Papers 2005-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    6. Kai Detlefsen & Giacomo Scandolo, 2005. "Conditional and dynamic convex risk measures," Finance and Stochastics, Springer, vol. 9(4), pages 539-561, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jocelyne Bion-Nadal, 2007. "Bid-Ask Dynamic Pricing in Financial Markets with Transaction Costs and Liquidity Risk," Papers math/0703074, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Lacker, 2015. "Law invariant risk measures and information divergences," Papers 1510.07030, arXiv.org, revised Jun 2016.
    2. Bion-Nadal, Jocelyne, 2009. "Time consistent dynamic risk processes," Stochastic Processes and their Applications, Elsevier, vol. 119(2), pages 633-654, February.
    3. Acciaio, Beatrice & Föllmer, Hans & Penner, Irina, 2012. "Risk assessment for uncertain cash flows: model ambiguity, discounting ambiguity, and the role of bubbles," LSE Research Online Documents on Economics 50118, London School of Economics and Political Science, LSE Library.
    4. Roorda Berend & Schumacher Hans, 2013. "Membership conditions for consistent families of monetary valuations," Statistics & Risk Modeling, De Gruyter, vol. 30(3), pages 255-280, August.
    5. Stadje, Mitja, 2010. "Extending dynamic convex risk measures from discrete time to continuous time: A convergence approach," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 391-404, December.
    6. Beatrice Acciaio & Hans Föllmer & Irina Penner, 2012. "Risk assessment for uncertain cash flows: model ambiguity, discounting ambiguity, and the role of bubbles," Finance and Stochastics, Springer, vol. 16(4), pages 669-709, October.
    7. Beatrice Acciaio & Irina Penner, 2010. "Dynamic risk measures," Papers 1002.3794, arXiv.org.
    8. Beatrice Acciaio & Hans Foellmer & Irina Penner, 2010. "Risk assessment for uncertain cash flows: Model ambiguity, discounting ambiguity, and the role of bubbles," Papers 1002.3627, arXiv.org.
    9. Ji, Ronglin & Shi, Xuejun & Wang, Shijie & Zhou, Jinming, 2019. "Dynamic risk measures for processes via backward stochastic differential equations," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 43-50.
    10. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    11. Zachary Feinstein & Birgit Rudloff, 2018. "Scalar multivariate risk measures with a single eligible asset," Papers 1807.10694, arXiv.org, revised Feb 2021.
    12. Rosazza Gianin, Emanuela, 2006. "Risk measures via g-expectations," Insurance: Mathematics and Economics, Elsevier, vol. 39(1), pages 19-34, August.
    13. Qinyu Wu & Fan Yang & Ping Zhang, 2023. "Conditional generalized quantiles based on expected utility model and equivalent characterization of properties," Papers 2301.12420, arXiv.org.
    14. Fei Sun & Jingchao Li & Jieming Zhou, 2018. "Dynamic risk measures with fluctuation of market volatility under Bochne-Lebesgue space," Papers 1806.01166, arXiv.org, revised Mar 2024.
    15. Wing Fung Chong & Ying Hu & Gechun Liang & Thaleia Zariphopoulou, 2019. "An ergodic BSDE approach to forward entropic risk measures: representation and large-maturity behavior," Finance and Stochastics, Springer, vol. 23(1), pages 239-273, January.
    16. Elisa Mastrogiacomo & Emanuela Rosazza Gianin, 2019. "Time-consistency of risk measures: how strong is such a property?," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 287-317, June.
    17. Rudloff, Birgit & Street, Alexandre & Valladão, Davi M., 2014. "Time consistency and risk averse dynamic decision models: Definition, interpretation and practical consequences," European Journal of Operational Research, Elsevier, vol. 234(3), pages 743-750.
    18. Föllmer Hans, 2014. "Spatial risk measures and their local specification: The locally law-invariant case," Statistics & Risk Modeling, De Gruyter, vol. 31(1), pages 79-101, March.
    19. Dan A. Iancu & Marek Petrik & Dharmashankar Subramanian, 2015. "Tight Approximations of Dynamic Risk Measures," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 655-682, March.
    20. Yi Shen & Zachary Van Oosten & Ruodu Wang, 2024. "Partial Law Invariance and Risk Measures," Papers 2401.17265, arXiv.org, revised Jun 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:math/0607212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.