IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v49y2017i1d10.1007_s10614-015-9549-9.html
   My bibliography  Save this article

Applying the Hybrid Model of EMD, PSR, and ELM to Exchange Rates Forecasting

Author

Listed:
  • Heng-Li Yang

    (National Chengchi University)

  • Han-Chou Lin

    (National Chengchi University)

Abstract

Financial time series forecasting has been a challenge for time series analysts and researchers because it is noisy, nonstationary and chaotic. To overcome this limitation, this study uses empirical mode decomposition (EMD) and phase space reconstruction (PSR) to assist in the task of financial time series forecasting. In addition, we propose an approach that combines these two data preprocessing methods with extreme learning machine (ELM). The approach contains four steps as follows. (1) EMD is used to decompose the dynamics of the exchange rate time series into several components of intrinsic mode function (IMF) and one residual component. (2) The IMF and residual time series phase space is reconstructed to reveal its unseen dynamics according to the optimum time delay $$\tau $$ τ and embedding dimension m. (3) The reconstructed time series datasets are divided into two datasets: training and testing, in which the training datasets are used to build ELM models. (4) A regression forecast model is set up for each IMF as well as the residual component by using ELM. The final prediction results are obtained by compositing the prediction values. To verify the effectiveness of the proposed approach, four exchange rates are chosen as the forecasting targets. Compared with some existing state-of-the-art models, the proposed approach yields superior results. Academically, we demonstrated the validity and superiority of the proposed approach that integrates EMD, PSR, and ELM. Corporations or individuals can apply the results of this study to acquire accurate exchange rate information and reduce exchange rate expenses.

Suggested Citation

  • Heng-Li Yang & Han-Chou Lin, 2017. "Applying the Hybrid Model of EMD, PSR, and ELM to Exchange Rates Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 49(1), pages 99-116, January.
  • Handle: RePEc:kap:compec:v:49:y:2017:i:1:d:10.1007_s10614-015-9549-9
    DOI: 10.1007/s10614-015-9549-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-015-9549-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-015-9549-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Bangzhu & Wei, Yiming, 2013. "Carbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodology," Omega, Elsevier, vol. 41(3), pages 517-524.
    2. Georgios Vasilakis & Konstantinos Theofilatos & Efstratios Georgopoulos & Andreas Karathanasopoulos & Spiros Likothanassis, 2013. "A Genetic Programming Approach for EUR/USD Exchange Rate Forecasting and Trading," Computational Economics, Springer;Society for Computational Economics, vol. 42(4), pages 415-431, December.
    3. Meese, Richard A. & Rogoff, Kenneth, 1983. "Empirical exchange rate models of the seventies : Do they fit out of sample?," Journal of International Economics, Elsevier, vol. 14(1-2), pages 3-24, February.
    4. Shangkun Deng & Kazuki Yoshiyama & Takashi Mitsubuchi & Akito Sakurai, 2015. "Hybrid Method of Multiple Kernel Learning and Genetic Algorithm for Forecasting Short-Term Foreign Exchange Rates," Computational Economics, Springer;Society for Computational Economics, vol. 45(1), pages 49-89, January.
    5. Wang, Ju-Jie & Wang, Jian-Zhou & Zhang, Zhe-George & Guo, Shu-Po, 2012. "Stock index forecasting based on a hybrid model," Omega, Elsevier, vol. 40(6), pages 758-766.
    6. Makridakis, Spyros, 1993. "Accuracy measures: theoretical and practical concerns," International Journal of Forecasting, Elsevier, vol. 9(4), pages 527-529, December.
    7. John Barkoulas & Nickolaos Travlos, 1998. "Chaos in an emerging capital market? The case of the Athens Stock Exchange," Applied Financial Economics, Taylor & Francis Journals, vol. 8(3), pages 231-243.
    8. McKenzie, Michael D., 2001. "Chaotic behavior in national stock market indices: New evidence from the close returns test," Global Finance Journal, Elsevier, vol. 12(1), pages 35-53.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leandro Maciel & Rosangela Ballini, 2021. "Functional Fuzzy Rule-Based Modeling for Interval-Valued Data: An Empirical Application for Exchange Rates Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 743-771, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leandro Maciel & Rosangela Ballini, 2021. "Functional Fuzzy Rule-Based Modeling for Interval-Valued Data: An Empirical Application for Exchange Rates Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 743-771, February.
    2. Marisa Faggini, 2011. "Chaotic Time Series Analysis in Economics: Balance and Perspectives," Working papers 25, Former Department of Economics and Public Finance "G. Prato", University of Torino.
    3. Wang, Minggang & Tian, Lixin & Zhou, Peng, 2018. "A novel approach for oil price forecasting based on data fluctuation network," Energy Economics, Elsevier, vol. 71(C), pages 201-212.
    4. Jun Hao & Xiaolei Sun & Qianqian Feng, 2020. "A Novel Ensemble Approach for the Forecasting of Energy Demand Based on the Artificial Bee Colony Algorithm," Energies, MDPI, vol. 13(3), pages 1-25, January.
    5. Kaijian He & Qian Yang & Lei Ji & Jingcheng Pan & Yingchao Zou, 2023. "Financial Time Series Forecasting with the Deep Learning Ensemble Model," Mathematics, MDPI, vol. 11(4), pages 1-15, February.
    6. repec:aaa:journl:v:3:y:1999:i:1:p:87-100 is not listed on IDEAS
    7. Zhao, Weigang & Wang, Jianzhou & Lu, Haiyan, 2014. "Combining forecasts of electricity consumption in China with time-varying weights updated by a high-order Markov chain model," Omega, Elsevier, vol. 45(C), pages 80-91.
    8. Konstandinos Chourmouziadis & Dimitra K. Chourmouziadou & Prodromos D. Chatzoglou, 2021. "Embedding Four Medium-Term Technical Indicators to an Intelligent Stock Trading Fuzzy System for Predicting: A Portfolio Management Approach," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1183-1216, April.
    9. Stefan Mittnik & Nikolay Robinzonov & Klaus Wohlrabe, 2013. "The Micro Dynamics of Macro Announcements," CESifo Working Paper Series 4421, CESifo.
    10. Kelly Burns & Imad Moosa, 2017. "Demystifying the Meese–Rogoff puzzle: structural breaks or measures of forecasting accuracy?," Applied Economics, Taylor & Francis Journals, vol. 49(48), pages 4897-4910, October.
    11. Gürkaynak, Refet S. & Kısacıkoğlu, Burçin & Lee, Sang Seok, 2022. "Exchange rate and inflation under weak monetary policy: Turkey verifies theory," CFS Working Paper Series 679, Center for Financial Studies (CFS).
    12. Coudert, Virginie & Mignon, Valérie, 2013. "The “forward premium puzzle” and the sovereign default risk," Journal of International Money and Finance, Elsevier, vol. 32(C), pages 491-511.
    13. Agnès Bénassy‐Quéré & Lionel Fontagné & Horst Raff, 2011. "Exchange‐rate Misalignments in Duopoly: The Case of Airbus and Boeing," The World Economy, Wiley Blackwell, vol. 34(4), pages 623-641, April.
    14. Rime, Dagfinn & Sarno, Lucio & Sojli, Elvira, 2010. "Exchange rate forecasting, order flow and macroeconomic information," Journal of International Economics, Elsevier, vol. 80(1), pages 72-88, January.
    15. Lothian, James R., 1997. "Multi-country evidence on the behavior of purchasing power parity under the current float," Journal of International Money and Finance, Elsevier, vol. 16(1), pages 19-35, February.
    16. Marcos Álvarez-Díaz & Alberto Álvarez, 2002. "Predicción No-Lineal De Tipos De Cambio: Algoritmos Genéticos, Redes Neuronales Y Fusión De Datos," Working Papers 0205, Universidade de Vigo, Departamento de Economía Aplicada.
    17. Carlo Altavilla & Paul De Grauwe, 2010. "Forecasting and combining competing models of exchange rate determination," Applied Economics, Taylor & Francis Journals, vol. 42(27), pages 3455-3480.
    18. Alberto Fuertes & Simón Sosvilla-Rivero, 2019. "“Forecasting emerging market currencies: Are inflation expectations useful?”," IREA Working Papers 201918, University of Barcelona, Research Institute of Applied Economics, revised Oct 2019.
    19. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    20. Dal Bianco, Marcos & Camacho, Maximo & Perez Quiros, Gabriel, 2012. "Short-run forecasting of the euro-dollar exchange rate with economic fundamentals," Journal of International Money and Finance, Elsevier, vol. 31(2), pages 377-396.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:49:y:2017:i:1:d:10.1007_s10614-015-9549-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.