IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v47y2016i4d10.1007_s10614-015-9500-0.html
   My bibliography  Save this article

Optimal Prediction Periods for New and Old Volatility Indexes in USA and German Markets

Author

Listed:
  • Javier Giner

    (University of La Laguna)

  • Sandra Morini

    (University of La Laguna)

  • Rafael Rosillo

    (University of León)

Abstract

In 1993, the Chicago Board of Options Exchange (CBOE) introduced the VXO, a volatility index based on implied volatilities on S&P 100 index. In 2003, the CBOE changed their volatility index design and introduced the VIX in order to enhance its economic significance and to facilitate hedging. In this paper, using data from the USA and the German stock markets, we compare the forecasting capability of the volatility indexes with that of historical volatility and conditional volatility models. Following this analysis, we have studied whether it may be the case that volatility indexes forecast the realized volatilities more accurately for a different period to 30 (or 45) days, attempting to answer the question: what time horizon is the informational content of volatility indexes best adjusted for? The optimal prediction period of each volatility index (VXO, VIX, VDAX and V1X) in terms of coefficient of determination is analysed. The results identify a difference between the observed optimal forecasting period and the theoretical one. This could be explained from different perspectives such as the index’s design, investor cognitive bias or overreaction.

Suggested Citation

  • Javier Giner & Sandra Morini & Rafael Rosillo, 2016. "Optimal Prediction Periods for New and Old Volatility Indexes in USA and German Markets," Computational Economics, Springer;Society for Computational Economics, vol. 47(4), pages 527-549, April.
  • Handle: RePEc:kap:compec:v:47:y:2016:i:4:d:10.1007_s10614-015-9500-0
    DOI: 10.1007/s10614-015-9500-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-015-9500-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-015-9500-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeff Fleming & Barbara Ostdiek & Robert E. Whaley, 1995. "Predicting stock market volatility: A new measure," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 15(3), pages 265-302, May.
    2. Peter Christoffersen & Steven Heston & Kris Jacobs, 2013. "Capturing Option Anomalies with a Variance-Dependent Pricing Kernel," The Review of Financial Studies, Society for Financial Studies, vol. 26(8), pages 1963-2006.
    3. Bird, Ron & Yeung, Danny, 2012. "How do investors react under uncertainty?," Pacific-Basin Finance Journal, Elsevier, vol. 20(2), pages 310-327.
    4. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    5. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. Xingguo Luo & Jin E. Zhang, 2012. "The Term Structure of VIX," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 32(12), pages 1092-1123, December.
    8. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
    9. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    10. Canina, Linda & Figlewski, Stephen, 1993. "The Informational Content of Implied Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 659-681.
    11. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    12. San‐Lin Chung & Wei‐Che Tsai & Yaw‐Huei Wang & Pei‐Shih Weng, 2011. "The information content of the S&P 500 index and VIX options on the dynamics of the S&P 500 index," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 31(12), pages 1170-1201, December.
    13. Allen M. Poteshman, 2001. "Underreaction, Overreaction, and Increasing Misreaction to Information in the Options Market," Journal of Finance, American Finance Association, vol. 56(3), pages 851-876, June.
    14. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    15. repec:bla:jfinan:v:44:y:1989:i:4:p:1011-23 is not listed on IDEAS
    16. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, June.
    17. Blair, Bevan J. & Poon, Ser-Huang & Taylor, Stephen J., 2001. "Forecasting S&P 100 volatility: the incremental information content of implied volatilities and high-frequency index returns," Journal of Econometrics, Elsevier, vol. 105(1), pages 5-26, November.
    18. Christensen, B. J. & Prabhala, N. R., 1998. "The relation between implied and realized volatility," Journal of Financial Economics, Elsevier, vol. 50(2), pages 125-150, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bali, Turan G. & Weinbaum, David, 2007. "A conditional extreme value volatility estimator based on high-frequency returns," Journal of Economic Dynamics and Control, Elsevier, vol. 31(2), pages 361-397, February.
    2. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    3. Turan G. Bali & Lin Peng, 2006. "Is there a risk–return trade‐off? Evidence from high‐frequency data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(8), pages 1169-1198, December.
    4. Xue Gong & Weiguo Zhang & Yuan Zhao & Xin Ye, 2023. "Forecasting stock volatility with a large set of predictors: A new forecast combination method," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1622-1647, November.
    5. Bentes, Sónia R., 2015. "A comparative analysis of the predictive power of implied volatility indices and GARCH forecasted volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 105-112.
    6. Neely, Christopher J., 2009. "Forecasting foreign exchange volatility: Why is implied volatility biased and inefficient? And does it matter?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(1), pages 188-205, February.
    7. Martin Martens & Dick van Dijk & Michiel de Pooter, 2004. "Modeling and Forecasting S&P 500 Volatility: Long Memory, Structural Breaks and Nonlinearity," Tinbergen Institute Discussion Papers 04-067/4, Tinbergen Institute.
    8. Busch, Thomas & Christensen, Bent Jesper & Nielsen, Morten Ørregaard, 2011. "The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets," Journal of Econometrics, Elsevier, vol. 160(1), pages 48-57, January.
    9. Sévi, Benoît, 2014. "Forecasting the volatility of crude oil futures using intraday data," European Journal of Operational Research, Elsevier, vol. 235(3), pages 643-659.
    10. Wong, Woon K. & Tu, Anthony H., 2009. "Market imperfections and the information content of implied and realized volatility," Pacific-Basin Finance Journal, Elsevier, vol. 17(1), pages 58-79, January.
    11. Eui Jung Chang & Benjamin Miranda Tabak, 2007. "Are implied volatilities more informative? The Brazilian real exchange rate case," Applied Financial Economics, Taylor & Francis Journals, vol. 17(7), pages 569-576.
    12. Benavides, Guillermo & Capistrán, Carlos, 2012. "Forecasting exchange rate volatility: The superior performance of conditional combinations of time series and option implied forecasts," Journal of Empirical Finance, Elsevier, vol. 19(5), pages 627-639.
    13. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    14. Athanasia Gavala & Nikolay Gospodinov & Deming Jiang, 2006. "Forecasting volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 381-400.
    15. Qiao, Gaoxiu & Yang, Jiyu & Li, Weiping, 2020. "VIX forecasting based on GARCH-type model with observable dynamic jumps: A new perspective," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    16. Turan Bali, 2007. "Modeling the dynamics of interest rate volatility with skewed fat-tailed distributions," Annals of Operations Research, Springer, vol. 151(1), pages 151-178, April.
    17. Rossi, Alessandro & Gallo, Giampiero M., 2006. "Volatility estimation via hidden Markov models," Journal of Empirical Finance, Elsevier, vol. 13(2), pages 203-230, March.
    18. Wei Zhang & Kai Yan & Dehua Shen, 2021. "Can the Baidu Index predict realized volatility in the Chinese stock market?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-31, December.
    19. Charles Corrado & Cameron Truong, 2004. "Forecasting Stock Index Volatility: The Incremental Information in the Intraday High-Low Price Range," Research Paper Series 127, Quantitative Finance Research Centre, University of Technology, Sydney.
    20. Andrea BUCCI, 2017. "Forecasting Realized Volatility A Review," Journal of Advanced Studies in Finance, ASERS Publishing, vol. 8(2), pages 94-138.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:47:y:2016:i:4:d:10.1007_s10614-015-9500-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.