IDEAS home Printed from https://ideas.repec.org/a/kap/apfinm/v30y2023i2d10.1007_s10690-022-09378-4.html
   My bibliography  Save this article

Measuring Dependence in a Set of Asset Returns

Author

Listed:
  • Dilip B. Madan

    (University of Maryland)

  • King Wang

    (Derivative Product Strats Morgan Stanley)

Abstract

An index measuring the degree of dependence in a set of asset returns is defined as the ratio of an equivalent number of independent assets to the number of assets. The equivalence is based on either attaining the same optimized value enhancement or spread reduction. The value enhancement is the difference in value of a value maximizing portfolio and the maximum value delivered by the components. The spread reduction is the percentage reduction attained by a spread minimizing portfolio relative to the smallest spread for the components. Asset values or bid and ask prices of portfolios, are modeled by conservative valuation operators from the theory of two price economies. The dependence indices fall with the number of assets in the portfolio and they are explained by a measure of concentration applied to normalized eigenvalues of the correlation matrix along with the average level of correlation, the level of the (Rudin and Morgan, 2006) portfolio diversification index and the number of assets in the portfolio. A time series of the indices constructed on the basis of the $$ S \& P$$ S & P 500 index and the nine sector ETF’s reveals a collapse during the financial crisis with no recovery until 2016, with a peak in February 2020 and a COVID crash in March of 2020. Furthermore, factor dependence benefits are richer than those found in equity indices. Dependence benefits across global indices are not as strong as dependence benefits across an equal number of domestic assets, but they rise substantially for longer horizons of up to three years.

Suggested Citation

  • Dilip B. Madan & King Wang, 2023. "Measuring Dependence in a Set of Asset Returns," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 30(2), pages 363-385, June.
  • Handle: RePEc:kap:apfinm:v:30:y:2023:i:2:d:10.1007_s10690-022-09378-4
    DOI: 10.1007/s10690-022-09378-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10690-022-09378-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10690-022-09378-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Dilip B. Madan & Wim Schoutens & King Wang, 2017. "Measuring And Monitoring The Efficiency Of Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(08), pages 1-32, December.
    3. Arjan B. Berkelaar & Roy Kouwenberg & Thierry Post, 2004. "Optimal Portfolio Choice under Loss Aversion," The Review of Economics and Statistics, MIT Press, vol. 86(4), pages 973-987, November.
    4. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    5. Gilles Boevi Koumou, 2020. "Diversification and portfolio theory: a review," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(3), pages 267-312, September.
    6. Luis M. Viceira & Zixuan (Kevin) Wang, 2018. "Global Portfolio Diversification for Long-Horizon Investors," NBER Working Papers 24646, National Bureau of Economic Research, Inc.
    7. Samuelson, Paul A., 1967. "General Proof that Diversification Pays*," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 2(1), pages 1-13, March.
    8. Madan,Dilip & Schoutens,Wim, 2016. "Applied Conic Finance," Cambridge Books, Cambridge University Press, number 9781107151697, October.
    9. John L. Evans & Stephen H. Archer, 1968. "Diversification And The Reduction Of Dispersion: An Empirical Analysis," Journal of Finance, American Finance Association, vol. 23(5), pages 761-767, December.
    10. Dilip B. Madan, 2016. "Conic Portfolio Theory," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 1-42, May.
    11. William N. Goetzmann & Lingfeng Li & K. Geert Rouwenhorst, 2005. "Long-Term Global Market Correlations," The Journal of Business, University of Chicago Press, vol. 78(1), pages 1-38, January.
    12. S. G. Kou & Hui Wang, 2004. "Option Pricing Under a Double Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 50(9), pages 1178-1192, September.
    13. Dirk Tasche, 2005. "Measuring sectoral diversification in an asymptotic multi-factor framework," Papers physics/0505142, arXiv.org, revised Jul 2006.
    14. repec:bla:kyklos:v:24:y:1971:i:4:p:753-66 is not listed on IDEAS
    15. Arshanapalli, Bala & Doukas, John, 1993. "International stock market linkages: Evidence from the pre- and post-October 1987 period," Journal of Banking & Finance, Elsevier, vol. 17(1), pages 193-208, February.
    16. Christian Marfels, 1971. "Absolute And Relative Measures Of Concentration Reconsidered," Kyklos, Wiley Blackwell, vol. 24(4), pages 753-766, November.
    17. Fernholz, Robert & Shay, Brian, 1982. "Stochastic Portfolio Theory and Stock Market Equilibrium," Journal of Finance, American Finance Association, vol. 37(2), pages 615-624, May.
    18. Sankaran, Jayaram K. & Patil, Ajay A., 1999. "On the optimal selection of portfolios under limited diversification," Journal of Banking & Finance, Elsevier, vol. 23(11), pages 1655-1666, November.
    19. Alexander Cherny & Dilip Madan, 2009. "New Measures for Performance Evaluation," The Review of Financial Studies, Society for Financial Studies, vol. 22(7), pages 2371-2406, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dilip B. Madan & King Wang, 2022. "Two sided efficient frontiers at multiple time horizons," Annals of Finance, Springer, vol. 18(3), pages 327-353, September.
    2. Dilip B. Madan & Wim Schoutens & King Wang, 2017. "Measuring And Monitoring The Efficiency Of Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(08), pages 1-32, December.
    3. Gilles Boevi Koumou, 2020. "Diversification and portfolio theory: a review," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(3), pages 267-312, September.
    4. Dilip B. Madan & Wim Schoutens, 2019. "Equilibrium Asset Returns In Financial Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(02), pages 1-43, March.
    5. Dilip B. Madan & Wim Schoutens & King Wang, 2020. "Bilateral multiple gamma returns: Their risks and rewards," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 7(01), pages 1-27, March.
    6. Dilip B. Madan & Wim Schoutens, 2020. "Self‐similarity in long‐horizon returns," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1368-1391, October.
    7. Dilip B. Madan & King Wang, 2021. "Pricing Product Options and Using Them to Complete Markets for Functions of Two Underlying Asset Prices," JRFM, MDPI, vol. 14(8), pages 1-20, August.
    8. Dilip B. Madan & Wim Schoutens, 2019. "Conic asset pricing and the costs of price fluctuations," Annals of Finance, Springer, vol. 15(1), pages 29-58, March.
    9. Gilles Boevi Koumou, 2016. "Risk reduction and Diversification within Markowitz's Mean-Variance Model: Theoretical Revisit," Papers 1608.05024, arXiv.org, revised Aug 2016.
    10. Benoît Carmichael & Gilles Boevi Koumou & Kevin Moran, 2023. "Unifying Portfolio Diversification Measures Using Rao’s Quadratic Entropy," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(4), pages 769-802, December.
    11. Buckley, Winston & Long, Hongwei & Marshall, Mario, 2016. "Numerical approximations of optimal portfolios in mispriced asymmetric Lévy markets," European Journal of Operational Research, Elsevier, vol. 252(2), pages 676-686.
    12. Gilles Boevi Koumou & Georges Dionne, 2022. "Coherent Diversification Measures in Portfolio Theory: An Axiomatic Foundation," Risks, MDPI, vol. 10(11), pages 1-19, October.
    13. Ole E. Barndorff-Nielsen & Neil Shephard, 2012. "Basics of Levy processes," Economics Papers 2012-W06, Economics Group, Nuffield College, University of Oxford.
    14. Liming Feng & Vadim Linetsky, 2008. "Pricing Options in Jump-Diffusion Models: An Extrapolation Approach," Operations Research, INFORMS, vol. 56(2), pages 304-325, April.
    15. Liming Feng & Vadim Linetsky, 2008. "Pricing Discretely Monitored Barrier Options And Defaultable Bonds In Lévy Process Models: A Fast Hilbert Transform Approach," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 337-384, July.
    16. Lucio Fiorin & Wim Schoutens, 2020. "Conic quantization: stochastic volatility and market implied liquidity," Quantitative Finance, Taylor & Francis Journals, vol. 20(4), pages 531-542, April.
    17. Svetlana Boyarchenko & Sergei Levendorskiĭ, 2019. "Sinh-Acceleration: Efficient Evaluation Of Probability Distributions, Option Pricing, And Monte Carlo Simulations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-49, May.
    18. Jang, H. & Lee, J., 2019. "Machine learning versus econometric jump models in predictability and domain adaptability of index options," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 74-86.
    19. Dilip Madan, 2011. "Joint risk-neutral laws and hedging," IISE Transactions, Taylor & Francis Journals, vol. 43(12), pages 840-850.
    20. Xia Han & Liyuan Lin & Ruodu Wang, 2022. "Diversification quotients: Quantifying diversification via risk measures," Papers 2206.13679, arXiv.org, revised Jul 2024.

    More about this item

    Keywords

    Bilateral Gamma; Acceptable Risks; Distorted Expectations;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:apfinm:v:30:y:2023:i:2:d:10.1007_s10690-022-09378-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.