IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1108.5940.html
   My bibliography  Save this paper

Asymptotically optimal discretization of hedging strategies with jumps

Author

Listed:
  • Mathieu Rosenbaum
  • Peter Tankov

Abstract

In this work, we consider the hedging error due to discrete trading in models with jumps. Extending an approach developed by Fukasawa [In Stochastic Analysis with Financial Applications (2011) 331-346 Birkh\"{a}user/Springer Basel AG] for continuous processes, we propose a framework enabling us to (asymptotically) optimize the discretization times. More precisely, a discretization rule is said to be optimal if for a given cost function, no strategy has (asymptotically, for large cost) a lower mean square discretization error for a smaller cost. We focus on discretization rules based on hitting times and give explicit expressions for the optimal rules within this class.

Suggested Citation

  • Mathieu Rosenbaum & Peter Tankov, 2011. "Asymptotically optimal discretization of hedging strategies with jumps," Papers 1108.5940, arXiv.org, revised Apr 2014.
  • Handle: RePEc:arx:papers:1108.5940
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1108.5940
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alev{s} v{C}ern'y & Jan Kallsen, 2007. "On the Structure of General Mean-Variance Hedging Strategies," Papers 0708.1715, arXiv.org, revised Jul 2017.
    2. Friedrich Hubalek & Jan Kallsen & Leszek Krawczyk, 2006. "Variance-optimal hedging for processes with stationary independent increments," Papers math/0607112, arXiv.org.
    3. Rosenbaum, Mathieu & Tankov, Peter, 2011. "Asymptotic results for time-changed Lévy processes sampled at hitting times," Stochastic Processes and their Applications, Elsevier, vol. 121(7), pages 1607-1632, July.
    4. Mats Brod'en & Peter Tankov, 2010. "Tracking errors from discrete hedging in exponential L\'evy models," Papers 1003.0709, arXiv.org.
    5. Dimitris Bertsimas & Leonid Kogan & Andrew W. Lo, 2001. "When Is Time Continuous?," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume II), chapter 3, pages 71-102, World Scientific Publishing Co. Pte. Ltd..
    6. Takaki Hayashi & Per A. Mykland, 2005. "Evaluating Hedging Errors: An Asymptotic Approach," Mathematical Finance, Wiley Blackwell, vol. 15(2), pages 309-343, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bouchard, Bruno & Muhle-Karbe, Johannes, 2022. "Simple bounds for utility maximization with small transaction costs," Stochastic Processes and their Applications, Elsevier, vol. 146(C), pages 98-113.
    2. Masaaki Fukasawa, 2014. "Efficient discretization of stochastic integrals," Finance and Stochastics, Springer, vol. 18(1), pages 175-208, January.
    3. Christoph Kuhn & Johannes Muhle-Karbe, 2013. "Optimal Liquidity Provision," Papers 1309.5235, arXiv.org, revised Feb 2015.
    4. Kühn, Christoph & Muhle-Karbe, Johannes, 2015. "Optimal liquidity provision," Stochastic Processes and their Applications, Elsevier, vol. 125(7), pages 2493-2515.
    5. Albert Altarovici & Johannes Muhle-Karbe & H. Mete Soner, 2013. "Asymptotics for Fixed Transaction Costs," Papers 1306.2802, arXiv.org, revised Oct 2013.
    6. Yaroslav Melnyk & Frank Thomas Seifried, 2018. "Small†cost asymptotics for long†term growth rates in incomplete markets," Mathematical Finance, Wiley Blackwell, vol. 28(2), pages 668-711, April.
    7. Martin Herdegen & Johannes Muhle-Karbe, 2018. "Stability of Radner equilibria with respect to small frictions," Finance and Stochastics, Springer, vol. 22(2), pages 443-502, April.
    8. Ibrahim Ekren & Ren Liu & Johannes Muhle-Karbe, 2015. "Optimal Rebalancing Frequencies for Multidimensional Portfolios," Papers 1510.05097, arXiv.org, revised Sep 2017.
    9. Cheng Cai & Tiziano De Angelis & Jan Palczewski, 2020. "Optimal hedging of a perpetual American put with a single trade," Papers 2003.06249, arXiv.org, revised Sep 2020.
    10. Albert Altarovici & Johannes Muhle-Karbe & Halil Soner, 2015. "Asymptotics for fixed transaction costs," Finance and Stochastics, Springer, vol. 19(2), pages 363-414, April.
    11. Jiatu Cai & Mathieu Rosenbaum & Peter Tankov, 2015. "Asymptotic Lower Bounds for Optimal Tracking: a Linear Programming Approach," Papers 1510.04295, arXiv.org.
    12. Johannes Muhle-Karbe & Max Reppen & H. Mete Soner, 2016. "A Primer on Portfolio Choice with Small Transaction Costs," Papers 1612.01302, arXiv.org, revised May 2017.
    13. Farzad Alavi Fard & Firmin Doko Tchatoka & Sivagowry Sriananthakumar, 2021. "Maximum Entropy Evaluation of Asymptotic Hedging Error under a Generalised Jump-Diffusion Model," JRFM, MDPI, vol. 14(3), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mats Brod'en & Peter Tankov, 2010. "Tracking errors from discrete hedging in exponential L\'evy models," Papers 1003.0709, arXiv.org.
    2. Alev{s} v{C}ern'y & Stephan Denkl & Jan Kallsen, 2013. "Hedging in L\'evy Models and the Time Step Equivalent of Jumps," Papers 1309.7833, arXiv.org, revised Jul 2017.
    3. Cl'ement M'enass'e & Peter Tankov, 2015. "Asymptotic indifference pricing in exponential L\'evy models," Papers 1502.03359, arXiv.org, revised Feb 2015.
    4. Takafumi Amaba, 2014. "A Discrete-Time Clark-Ocone Formula for Poisson Functionals," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 21(2), pages 97-120, May.
    5. Farzad Alavi Fard & Firmin Doko Tchatoka & Sivagowry Sriananthakumar, 2021. "Maximum Entropy Evaluation of Asymptotic Hedging Error under a Generalised Jump-Diffusion Model," JRFM, MDPI, vol. 14(3), pages 1-19, February.
    6. Tankov, Peter & Voltchkova, Ekaterina, 2009. "Asymptotic analysis of hedging errors in models with jumps," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 2004-2027, June.
    7. Wanyang Dai, 2014. "Mean-variance hedging based on an incomplete market with external risk factors of non-Gaussian OU processes," Papers 1410.0991, arXiv.org, revised Aug 2015.
    8. Stefan Geiss & Emmanuel Gobet, 2011. "Fractional smoothness and applications in Finance," Post-Print hal-00474803, HAL.
    9. Lin, X. Sheldon & Wu, Panpan & Wang, Xiao, 2016. "Move-based hedging of variable annuities: A semi-analytic approach," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 40-49.
    10. Pirjetä, Antti & Ikäheimo, Seppo & Puttonen, Vesa, 2010. "Market pricing of executive stock options and implied risk preferences," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 394-412, June.
    11. Ismail Laachir & Francesco Russo, 2016. "BSDEs, càdlàg martingale problems and orthogonalisation under basis risk," Working Papers hal-01086227, HAL.
    12. Jirô Akahori & Takafumi Amaba & Kaori Okuma, 2017. "A Discrete-Time Clark–Ocone Formula and its Application to an Error Analysis," Journal of Theoretical Probability, Springer, vol. 30(3), pages 932-960, September.
    13. Asaf Cohen & Yan Dolinsky, 2022. "A scaling limit for utility indifference prices in the discretised Bachelier model," Finance and Stochastics, Springer, vol. 26(2), pages 335-358, April.
    14. Aleš Černý & Jan Kallsen, 2008. "Mean–Variance Hedging And Optimal Investment In Heston'S Model With Correlation," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 473-492, July.
    15. Sebastian Herrmann & Johannes Muhle-Karbe & Frank Thomas Seifried, 2016. "Hedging with Small Uncertainty Aversion," Papers 1605.06429, arXiv.org.
    16. Balder, Sven & Brandl, Michael & Mahayni, Antje, 2009. "Effectiveness of CPPI strategies under discrete-time trading," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 204-220, January.
    17. Simon F'ecamp & Joseph Mikael & Xavier Warin, 2019. "Risk management with machine-learning-based algorithms," Papers 1902.05287, arXiv.org, revised Aug 2020.
    18. Ibrahim Ekren & Ren Liu & Johannes Muhle-Karbe, 2015. "Optimal Rebalancing Frequencies for Multidimensional Portfolios," Papers 1510.05097, arXiv.org, revised Sep 2017.
    19. Asaf Cohen & Yan Dolinsky, 2021. "A Scaling Limit for Utility Indifference Prices in the Discretized Bachelier Model," Papers 2102.11968, arXiv.org, revised Mar 2022.
    20. Jan Kallsen & Johannes Muhle-Karbe & Richard Vierthauer, 2009. "Asymptotic Power Utility-Based Pricing and Hedging," Papers 0912.3362, arXiv.org, revised Jan 2013.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1108.5940. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.