IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v078i01.html
   My bibliography  Save this article

libstable: Fast, Parallel, and High-Precision Computation of α-Stable Distributions in R, C/C++, and MATLAB

Author

Listed:
  • Royuela-del-Val, Javier
  • Simmross-Wattenberg, Federico
  • Alberola-López, Carlos

Abstract

α-stable distributions are a family of well-known probability distributions. However, the lack of closed analytical expressions hinders their application. Currently, several tools have been developed to numerically evaluate their density and distribution functions or to estimate their parameters, but available solutions either do not reach sufficient precision on their evaluations or are excessively slow for practical purposes. Moreover, they do not take full advantage of the parallel processing capabilities of current multi-core machines. Other solutions work only on a subset of the α-stable parameter space. In this paper we present an R package and a C/C++ library with a MATLAB front-end that permit parallelized, fast and high precision evaluation of density, distribution and quantile functions, as well as random variable generation and parameter estimation of α-stable distributions in their whole parameter space. The described library can be easily integrated into third party developments.

Suggested Citation

  • Royuela-del-Val, Javier & Simmross-Wattenberg, Federico & Alberola-López, Carlos, 2017. "libstable: Fast, Parallel, and High-Precision Computation of α-Stable Distributions in R, C/C++, and MATLAB," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 78(i01).
  • Handle: RePEc:jss:jstsof:v:078:i01
    DOI: http://hdl.handle.net/10.18637/jss.v078.i01
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v078i01/v78i01.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v078i01/libstable_v1.0.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v078i01/libstableR_1.0.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v078i01/v78i01-replication.zip
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v078.i01?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pavel Cizek & Wolfgang Karl Härdle & Rafal Weron, 2011. "Statistical Tools for Finance and Insurance (2nd edition)," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook1101, December.
    2. Weron, Rafal, 1996. "On the Chambers-Mallows-Stuck method for simulating skewed stable random variables," Statistics & Probability Letters, Elsevier, vol. 28(2), pages 165-171, June.
    3. Weron, Rafał, 2004. "Computationally intensive Value at Risk calculations," Papers 2004,32, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Viacheslav Saenko, 2020. "The Calculation of the Density and Distribution Functions of Strictly Stable Laws," Mathematics, MDPI, vol. 8(5), pages 1-38, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luc Devroye & Lancelot James, 2014. "On simulation and properties of the stable law," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(3), pages 307-343, August.
    2. Borak, Szymon & Misiorek, Adam & Weron, Rafał, 2010. "Models for heavy-tailed asset returns," SFB 649 Discussion Papers 2010-049, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    3. Szczurek, Andrzej & Maciejewska, Monika & Wyłomańska, Agnieszka & Sikora, Grzegorz & Balcerek, Michał & Teuerle, Marek, 2016. "Discrimination of particulate matter emission sources using stochastic methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 452-466.
    4. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0601, December.
    5. Rafał Weron, 2009. "Heavy-tails and regime-switching in electricity prices," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(3), pages 457-473, July.
    6. Furrer, Hansjorg & Michna, Zbigniew & Weron, Aleksander, 1997. "Stable Lévy motion approximation in collective risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 20(2), pages 97-114, September.
    7. Weron, Rafal & Misiorek, Adam, 2007. "Heavy tails and electricity prices: Do time series models with non-Gaussian noise forecast better than their Gaussian counterparts?," MPRA Paper 2292, University Library of Munich, Germany, revised Oct 2007.
    8. Wesselhöfft, Niels & Härdle, Wolfgang Karl, 2019. "Constrained Kelly portfolios under alpha-stable laws," IRTG 1792 Discussion Papers 2019-004, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    9. Dassios, Angelos & Qu, Yan & Zhao, Hongbiao, 2018. "Exact simulation for a class of tempered stable," LSE Research Online Documents on Economics 86981, London School of Economics and Political Science, LSE Library.
    10. Jabłońska-Sabuka, Matylda & Teuerle, Marek & Wyłomańska, Agnieszka, 2017. "Bivariate sub-Gaussian model for stock index returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 628-637.
    11. Beaulieu, Marie-Claude & Dufour, Jean-Marie & Khalaf, Lynda, 2014. "Exact confidence sets and goodness-of-fit methods for stable distributions," Journal of Econometrics, Elsevier, vol. 181(1), pages 3-14.
    12. Koenker, Roger & Portnoy, Stephen, 2000. "Some pathological regression asymptotics under stable conditions," Statistics & Probability Letters, Elsevier, vol. 50(3), pages 219-228, November.
    13. J.-F. Chamayou, 2001. "Pseudo random numbers for the Landau and Vavilov distributions," Computational Statistics, Springer, vol. 16(1), pages 131-152, March.
    14. Ogwang, Tomson, 2013. "Is the wealth of the world’s billionaires Paretian?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 757-762.
    15. Weron, Rafał, 2004. "Computationally intensive Value at Risk calculations," Papers 2004,32, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    16. Jean‐Marie Dufour & Lynda Khalaf & Marie‐Claude Beaulieu, 2003. "Exact Skewness–Kurtosis Tests for Multivariate Normality and Goodness‐of‐Fit in Multivariate Regressions with Application to Asset Pricing Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 891-906, December.
    17. Tsionas, Mike, 2012. "Simple techniques for likelihood analysis of univariate and multivariate stable distributions: with extensions to multivariate stochastic volatility and dynamic factor models," MPRA Paper 40966, University Library of Munich, Germany, revised 20 Aug 2012.
    18. John C. Frain, 2007. "Small sample power of tests of normality when the alternative is an alpha-stable distribution," Trinity Economics Papers tep0207, Trinity College Dublin, Department of Economics.
    19. Harry Pavlopoulos & George Chronis, 2023. "On highly skewed fractional log‐stable noise sequences and their application," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(4), pages 337-358, July.
    20. Claudio Fontana & Alessandro Gnoatto & Guillaume Szulda, 2021. "CBI-time-changed Lévy processes for multi-currency modeling," Working Papers 14/2021, University of Verona, Department of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:078:i01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.