IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v058i07.html
   My bibliography  Save this article

conting: An R Package for Bayesian Analysis of Complete and Incomplete Contingency Tables

Author

Listed:
  • Overstall, Antony M.
  • King, Ruth

Abstract

The aim of this paper is to demonstrate the R package conting for the Bayesian analysis of complete and incomplete contingency tables using hierarchical log-linear models. This package allows a user to identify interactions between categorical factors (via complete contingency tables) and to estimate closed population sizes using capture-recapture studies (via incomplete contingency tables). The models are fitted using Markov chain Monte Carlo methods. In particular, implementations of the Metropolis-Hastings and reversible jump algorithms appropriate for log-linear models are employed. The conting package is demonstrated on four real examples.

Suggested Citation

  • Overstall, Antony M. & King, Ruth, 2014. "conting: An R Package for Bayesian Analysis of Complete and Incomplete Contingency Tables," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i07).
  • Handle: RePEc:jss:jstsof:v:058:i07
    DOI: http://hdl.handle.net/10.18637/jss.v058.i07
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v058i07/v58i07.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v058i07/conting_1.3.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v058i07/v58i07.R
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v058.i07?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. P. Brooks & P. Giudici & G. O. Roberts, 2003. "Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 3-39, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olivier Binette & Rebecca C. Steorts, 2022. "On the reliability of multiple systems estimation for the quantification of modern slavery," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(2), pages 640-676, April.
    2. Chang Xuan Mao & Ruochen Huang & Sijia Zhang, 2017. "Petersen estimator, Chapman adjustment, list effects, and heterogeneity," Biometrics, The International Biometric Society, vol. 73(1), pages 167-173, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Riccardo (Jack) Lucchetti & Luca Pedini, 2020. "ParMA: Parallelised Bayesian Model Averaging for Generalised Linear Models," Working Papers 2020:28, Department of Economics, University of Venice "Ca' Foscari".
    2. Chen, Langnan & Luo, Jiawen & Liu, Hao, 2013. "The determinants of liquidity with G-RJMCMC-VS model: Evidence from China," Economic Modelling, Elsevier, vol. 35(C), pages 192-198.
    3. David I. Hastie & Peter J. Green, 2012. "Model choice using reversible jump Markov chain Monte Carlo," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 66(3), pages 309-338, August.
    4. Liqun Wang & James Fu, 2007. "A practical sampling approach for a Bayesian mixture model with unknown number of components," Statistical Papers, Springer, vol. 48(4), pages 631-653, October.
    5. Tsung-I Lin & Hsiu Ho & Pao Shen, 2009. "Computationally efficient learning of multivariate t mixture models with missing information," Computational Statistics, Springer, vol. 24(3), pages 375-392, August.
    6. Yinghui Wei & Peter Neal & Sandra Telfer & Mike Begon, 2012. "Statistical analysis of an endemic disease from a capture--recapture experiment," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(12), pages 2759-2773, August.
    7. McVinish, R. & Mengersen, K., 2008. "Semiparametric Bayesian circular statistics," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4722-4730, June.
    8. Gagnon, Philippe & Bédard, Mylène & Desgagné, Alain, 2019. "Weak convergence and optimal tuning of the reversible jump algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 32-51.
    9. Meyer-Gohde, Alexander & Neuhoff, Daniel, 2015. "Generalized exogenous processes in DSGE: A Bayesian approach," SFB 649 Discussion Papers 2015-014, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    10. McGrory, C.A. & Pettitt, A.N. & Faddy, M.J., 2009. "A fully Bayesian approach to inference for Coxian phase-type distributions with covariate dependent mean," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4311-4321, October.
    11. Oedekoven, C.S. & King, R. & Buckland, S.T. & Mackenzie, M.L. & Evans, K.O. & Burger, L.W., 2016. "Using hierarchical centering to facilitate a reversible jump MCMC algorithm for random effects models," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 79-90.
    12. Pandolfi, Silvia & Bartolucci, Francesco & Friel, Nial, 2014. "A generalized multiple-try version of the Reversible Jump algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 298-314.
    13. Giudici, Paolo, 2018. "Financial data science," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 160-164.
    14. Oscar M Rueda & Ramón Díaz-Uriarte, 2007. "Flexible and Accurate Detection of Genomic Copy-Number Changes from aCGH," PLOS Computational Biology, Public Library of Science, vol. 3(6), pages 1-8, June.
    15. Víctor Enciso‐Mora & Peter Neal & T. Subba Rao, 2009. "Efficient order selection algorithms for integer‐valued ARMA processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 1-18, January.
    16. D. Fouskakis & I. Ntzoufras & D. Draper, 2009. "Population‐based reversible jump Markov chain Monte Carlo methods for Bayesian variable selection and evaluation under cost limit restrictions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(3), pages 383-403, July.
    17. Alzahrani, Naif & Neal, Peter & Spencer, Simon E.F. & McKinley, Trevelyan J. & Touloupou, Panayiota, 2018. "Model selection for time series of count data," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 33-44.
    18. Sridhar Narayanan, 2013. "Bayesian estimation of discrete games of complete information," Quantitative Marketing and Economics (QME), Springer, vol. 11(1), pages 39-81, March.
    19. Kobayashi, Genya, 2014. "A transdimensional approximate Bayesian computation using the pseudo-marginal approach for model choice," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 167-183.
    20. N. Friel & A. N. Pettitt, 2008. "Marginal likelihood estimation via power posteriors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(3), pages 589-607, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:058:i07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.