IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v054i11.html
   My bibliography  Save this article

survPresmooth: An R Package for Presmoothed Estimation in Survival Analysis

Author

Listed:
  • López-de-Ullibarri, Ignacio
  • Jácome, M. Amalia

Abstract

The survPresmooth package for R implements nonparametric presmoothed estimators of the main functions studied in survival analysis (survival, density, hazard and cumulative hazard functions). Presmoothed versions of the classical nonparametric estimators have been shown to increase efficiency if the presmoothing bandwidth is suitably chosen. The survPresmooth package provides plug-in and bootstrap bandwidth selectors, also allowing the possibility of using fixed bandwidths.

Suggested Citation

  • López-de-Ullibarri, Ignacio & Jácome, M. Amalia, 2013. "survPresmooth: An R Package for Presmoothed Estimation in Survival Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 54(i11).
  • Handle: RePEc:jss:jstsof:v:054:i11
    DOI: http://hdl.handle.net/10.18637/jss.v054.i11
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v054i11/survPresmooth_An_R_Package_for_Presmoothed_Estimation_in_Survival_Analysis.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v054i11/survPresmooth_1.1-8.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v054i11/v54i11.R
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v054.i11?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ricardo Cao & Ignacio López-de-Ullibarri, 2007. "Product-type and presmoothed hazard rate estimators with censored data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 355-382, August.
    2. Chen, Zhenmin, 2000. "A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function," Statistics & Probability Letters, Elsevier, vol. 49(2), pages 155-161, August.
    3. Cai, Zongwu, 1998. "Asymptotic properties of Kaplan-Meier estimator for censored dependent data," Statistics & Probability Letters, Elsevier, vol. 37(4), pages 381-389, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arthur Berg & Dimitris Politis & Kagba Suaray & Hui Zeng, 2020. "Reduced bias nonparametric lifetime density and hazard estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 704-727, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Linjun & Zhou, Zhangong & Wu, Changchun, 2012. "Weighted composite quantile estimation and variable selection method for censored regression model," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 653-663.
    2. Jingle Wang & Ming Zheng, 2012. "Wavelet detection of change points in hazard rate models with censored dependent data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(3), pages 765-781.
    3. Sun, Liuquan & Zhou, Xian, 2001. "Survival function and density estimation for truncated dependent data," Statistics & Probability Letters, Elsevier, vol. 52(1), pages 47-57, March.
    4. Yi Wu & Wei Yu & Xuejun Wang, 2022. "Strong representations of the Kaplan–Meier estimator and hazard estimator with censored widely orthant dependent data," Computational Statistics, Springer, vol. 37(1), pages 383-402, March.
    5. Han-Ying Liang & Jacobo Uña-Álvarez, 2011. "Asymptotic properties of conditional quantile estimator for censored dependent observations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(2), pages 267-289, April.
    6. Gauss M. Cordeiro & Giovana O. Silva & Edwin M. M. Ortega, 2016. "An extended-G geometric family," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-16, December.
    7. José Daniel López-Barrientos & Ekaterina Viktorovna Gromova & Ekaterina Sergeevna Miroshnichenko, 2020. "Resource Exploitation in a Stochastic Horizon under Two Parametric Interpretations," Mathematics, MDPI, vol. 8(7), pages 1-29, July.
    8. Ouafae Benrabah & Elias Ould Saïd & Abdelkader Tatachak, 2015. "A kernel mode estimate under random left truncation and time series model: asymptotic normality," Statistical Papers, Springer, vol. 56(3), pages 887-910, August.
    9. Varun Agiwal, 2023. "Bayesian Estimation of Stress Strength Reliability from Inverse Chen Distribution with Application on Failure Time Data," Annals of Data Science, Springer, vol. 10(2), pages 317-347, April.
    10. Fiaz Ahmad Bhatti & G. G. Hamedani & Seyed Morteza Najibi & Munir Ahmad, 2021. "On the Extended Chen Distribution: Development, Properties, Characterizations and Applications," Annals of Data Science, Springer, vol. 8(1), pages 159-180, March.
    11. Barriga, Gladys D.C. & Louzada-Neto, Franscisco & Cancho, Vicente G., 2011. "The complementary exponential power lifetime model," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1250-1259, March.
    12. Gupta, Ashutosh & Mukherjee, Bhaswati & Upadhyay, S.K., 2008. "Weibull extension model: A Bayes study using Markov chain Monte Carlo simulation," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1434-1443.
    13. Taoufik Bouezmarni & Jeroen Rombouts, 2008. "Density and hazard rate estimation for censored and α-mixing data using gamma kernels," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(7), pages 627-643.
    14. Wenjie Zhang & Wenhao Gui, 2022. "Statistical Inference and Optimal Design of Accelerated Life Testing for the Chen Distribution under Progressive Type-II Censoring," Mathematics, MDPI, vol. 10(9), pages 1-21, May.
    15. Silva, Rodrigo B. & Bourguignon, Marcelo & Dias, Cícero R.B. & Cordeiro, Gauss M., 2013. "The compound class of extended Weibull power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 352-367.
    16. Salah Khardani & Mohamed Lemdani & Elias Ould Saïd, 2012. "On the strong uniform consistency of the mode estimator for censored time series," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(2), pages 229-241, February.
    17. Eckhard Liebscher, 2002. "Kernel Density and Hazard Rate Estimation for Censored Data under α-Mixing Condition," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(1), pages 19-28, March.
    18. Mahmoud M. Mansour & Mohammed A. Farsi & Salah M. Mohamed & Enayat M. Abd Elrazik, 2021. "Modeling the COVID-19 Pandemic Dynamics in Egypt and Saudi Arabia," Mathematics, MDPI, vol. 9(8), pages 1-13, April.
    19. Ajit Chaturvedi & Ananya Malhotra, 2017. "Estimation and testing procedures for the reliability functions of a family of lifetime distributions based on records," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 836-848, November.
    20. Arthur Berg & Dimitris Politis & Kagba Suaray & Hui Zeng, 2020. "Reduced bias nonparametric lifetime density and hazard estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 704-727, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:054:i11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.