IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v63y2011i2p267-289.html
   My bibliography  Save this article

Asymptotic properties of conditional quantile estimator for censored dependent observations

Author

Listed:
  • Han-Ying Liang
  • Jacobo Uña-Álvarez

Abstract

No abstract is available for this item.

Suggested Citation

  • Han-Ying Liang & Jacobo Uña-Álvarez, 2011. "Asymptotic properties of conditional quantile estimator for censored dependent observations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(2), pages 267-289, April.
  • Handle: RePEc:spr:aistmt:v:63:y:2011:i:2:p:267-289
    DOI: 10.1007/s10463-009-0230-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10463-009-0230-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10463-009-0230-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qin, Gengsheng & Tsao, Min, 2003. "Empirical likelihood inference for median regression models for censored survival data," Journal of Multivariate Analysis, Elsevier, vol. 85(2), pages 416-430, May.
    2. Yao, Qiwei & Polonik, Wolfgang, 2002. "Set-indexed conditional empirical and quantile processes based on dependent data," LSE Research Online Documents on Economics 5878, London School of Economics and Political Science, LSE Library.
    3. Iglesias-Pérez, M. C., 2003. "Strong representation of a conditional quantile function estimator with truncated and censored data," Statistics & Probability Letters, Elsevier, vol. 65(2), pages 79-91, November.
    4. Mehra, K. L. & Sudhakara Rao, M. & Upadrasta, S. P., 1991. "A smooth conditional quantile estimator and related applications of conditional empirical processes," Journal of Multivariate Analysis, Elsevier, vol. 37(2), pages 151-179, May.
    5. Liebscher E., 2001. "Estimation Of The Density And The Regression Function Under Mixing Conditions," Statistics & Risk Modeling, De Gruyter, vol. 19(1), pages 9-26, January.
    6. Xiang, Xiaojing, 1996. "A Kernel Estimator of a Conditional Quantile," Journal of Multivariate Analysis, Elsevier, vol. 59(2), pages 206-216, November.
    7. Koehler, K. J. & Symanowski, J. T., 1995. "Constructing Multivariate Distributions with Specific Marginal Distributions," Journal of Multivariate Analysis, Elsevier, vol. 55(2), pages 261-282, November.
    8. R.D. Gill, 1980. "Censoring and Stochastic Integrals," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 34(2), pages 124-124, June.
    9. Cai, Zongwu, 1998. "Asymptotic properties of Kaplan-Meier estimator for censored dependent data," Statistics & Probability Letters, Elsevier, vol. 37(4), pages 381-389, March.
    10. Zhou, Yong & Liang, Hua, 2000. "Asymptotic Normality for L1 Norm Kernel Estimator of Conditional Median under [alpha]-Mixing Dependence," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 136-154, April.
    11. Cai, Zongwu, 2002. "Regression Quantiles For Time Series," Econometric Theory, Cambridge University Press, vol. 18(1), pages 169-192, February.
    12. Polonik, Wolfgang & Yao, Qiwei, 2002. "Set-Indexed Conditional Empirical and Quantile Processes Based on Dependent Data," Journal of Multivariate Analysis, Elsevier, vol. 80(2), pages 234-255, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han-Ying Liang & Jacobo Uña-Álvarez, 2012. "Empirical likelihood for conditional quantile with left-truncated and dependent data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(4), pages 765-790, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han-Ying Liang & Jacobo Uña-Álvarez, 2012. "Empirical likelihood for conditional quantile with left-truncated and dependent data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(4), pages 765-790, August.
    2. Liang, Han-Ying & de Ua-lvarez, Jacobo, 2009. "A Berry-Esseen type bound in kernel density estimation for strong mixing censored samples," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1219-1231, July.
    3. Ould-SaI¨d, Elias, 2006. "A strong uniform convergence rate of kernel conditional quantile estimator under random censorship," Statistics & Probability Letters, Elsevier, vol. 76(6), pages 579-586, March.
    4. Liang, Han-Ying & Peng, Liang, 2010. "Asymptotic normality and Berry-Esseen results for conditional density estimator with censored and dependent data," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1043-1054, May.
    5. Tang, Linjun & Zhou, Zhangong & Wu, Changchun, 2012. "Weighted composite quantile estimation and variable selection method for censored regression model," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 653-663.
    6. Li, Weiming & Gao, Jing & Li, Kunpeng & Yao, Qiwei, 2016. "Modelling multivariate volatilities via latent common factors," LSE Research Online Documents on Economics 68121, London School of Economics and Political Science, LSE Library.
    7. Goldman, Matt & Kaplan, David M., 2017. "Fractional order statistic approximation for nonparametric conditional quantile inference," Journal of Econometrics, Elsevier, vol. 196(2), pages 331-346.
    8. Yi Wu & Wei Yu & Xuejun Wang, 2022. "Strong representations of the Kaplan–Meier estimator and hazard estimator with censored widely orthant dependent data," Computational Statistics, Springer, vol. 37(1), pages 383-402, March.
    9. Cai, Zongwu, 2001. "Estimating a Distribution Function for Censored Time Series Data," Journal of Multivariate Analysis, Elsevier, vol. 78(2), pages 299-318, August.
    10. Jing Wang, 2012. "Modelling time trend via spline confidence band," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(2), pages 275-301, April.
    11. Lemdani, Mohamed & Ould-Saïd, Elias & Poulin, Nicolas, 2009. "Asymptotic properties of a conditional quantile estimator with randomly truncated data," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 546-559, March.
    12. Polonik, Wolfgang & Yao, Qiwei, 2002. "Set-Indexed Conditional Empirical and Quantile Processes Based on Dependent Data," Journal of Multivariate Analysis, Elsevier, vol. 80(2), pages 234-255, February.
    13. Fakoor, Vahid & Jomhoori, Sarah & Azarnoosh, Hasanali, 2009. "Asymptotic expansion for ISE of kernel density estimators under censored dependent model," Statistics & Probability Letters, Elsevier, vol. 79(17), pages 1809-1817, September.
    14. Zhou, Xing-cai & Xu, Ying-zhi & Lin, Jin-guan, 2017. "Wavelet estimation in varying coefficient models for censored dependent data," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 179-189.
    15. Liang, Han-Ying & Li, Deli & Qi, Yongcheng, 2009. "Strong convergence in nonparametric regression with truncated dependent data," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 162-174, January.
    16. Lin, Zhengyan & Li, Degui, 2007. "Asymptotic normality for L1-norm kernel estimator of conditional median under association dependence," Journal of Multivariate Analysis, Elsevier, vol. 98(6), pages 1214-1230, July.
    17. Dabo-Niang, Sophie & Francq, Christian & Zakoïan, Jean-Michel, 2010. "Combining Nonparametric and Optimal Linear Time Series Predictions," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1554-1565.
    18. Qi Li & Juan Lin & Jeffrey S. Racine, 2013. "Optimal Bandwidth Selection for Nonparametric Conditional Distribution and Quantile Functions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 57-65, January.
    19. Liebscher, Eckhard, 2003. "Strong convergence of estimators in nonlinear autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 84(2), pages 247-261, February.
    20. Erica Brittain & Dean Follmann & Song Yang, 2008. "Dynamic Comparison of Kaplan–Meier Proportions: Monitoring a Randomized Clinical Trial with a Long-Term Binary Endpoint," Biometrics, The International Biometric Society, vol. 64(1), pages 189-197, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:63:y:2011:i:2:p:267-289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.