IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v054i01.html
   My bibliography  Save this article

Fitting Additive Binomial Regression Models with the R Package blm

Author

Listed:
  • Kovalchik, Stephanie
  • Varadhan, Ravi

Abstract

The R package blm provides functions for fitting a family of additive regression models to binary data. The included models are the binomial linear model, in which all covariates have additive effects, and the linear-expit (lexpit) model, which allows some covariates to have additive effects and other covariates to have logisitc effects. Additive binomial regression is a model of event probability, and the coefficients of linear terms estimate covariate-adjusted risk differences. Thus, in contrast to logistic regression, additive binomial regression puts focus on absolute risk and risk differences. In this paper, we give an overview of the methodology we have developed to fit the binomial linear and lexpit models to binary outcomes from cohort and population-based case-control studies. We illustrate the blm package’s methods for additive model estimation, diagnostics, and inference with risk association analyses of a bladder cancer nested case-control study in the NIH-AARP Diet and Health Study.

Suggested Citation

  • Kovalchik, Stephanie & Varadhan, Ravi, 2013. "Fitting Additive Binomial Regression Models with the R Package blm," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 54(i01).
  • Handle: RePEc:jss:jstsof:v:054:i01
    DOI: http://hdl.handle.net/10.18637/jss.v054.i01
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v054i01/Fitting_Additive_Binomial_Regression_Models_with_the_R_Package_blm.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v054i01/blm_2013.2.4.4.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v054i01/v54i01.R
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v054.i01?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Donald W. K. Andrews, 2000. "Inconsistency of the Bootstrap when a Parameter Is on the Boundary of the Parameter Space," Econometrica, Econometric Society, vol. 68(2), pages 399-406, March.
    2. Archer, Kellie J. & Lemeshow, Stanley & Hosmer, David W., 2007. "Goodness-of-fit tests for logistic regression models when data are collected using a complex sampling design," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4450-4464, May.
    3. Barry I. Graubard & Thomas R. Fears, 2005. "Standard Errors for Attributable Risk for Simple and Complex Sample Designs," Biometrics, The International Biometric Society, vol. 61(3), pages 847-855, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel D. Reidpath & Ireneous Soyiri & Nowrozy K. Jahan & Devi Mohan & Badariah Ahmad & Mohtar Pungut Ahmad & Zaid Bin Kassim & Pascale Allotey, 2018. "Poor glycaemic control and its metabolic and demographic risk factors in a Malaysian community-based study," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 63(2), pages 193-202, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Young-Joo Kim & Myung Hwan Seo, 2017. "Is There a Jump in the Transition?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 241-249, April.
    2. Khalaf, Lynda & Saphores, Jean-Daniel & Bilodeau, Jean-Francois, 2003. "Simulation-based exact jump tests in models with conditional heteroskedasticity," Journal of Economic Dynamics and Control, Elsevier, vol. 28(3), pages 531-553, December.
    3. Dufour, Jean-Marie, 2006. "Monte Carlo tests with nuisance parameters: A general approach to finite-sample inference and nonstandard asymptotics," Journal of Econometrics, Elsevier, vol. 133(2), pages 443-477, August.
    4. Jean-Thomas Bernard & Ba Chu & Lynda Khalaf & Marcel Voia, 2019. "Non-Standard Confidence Sets for Ratios and Tipping Points with Applications to Dynamic Panel Data," Annals of Economics and Statistics, GENES, issue 134, pages 79-108.
    5. Iglesias Emma M., 2011. "Constrained k-class Estimators in the Presence of Weak Instruments," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(4), pages 1-13, September.
    6. Jiang, Feiyu & Li, Dong & Zhu, Ke, 2020. "Non-standard inference for augmented double autoregressive models with null volatility coefficients," Journal of Econometrics, Elsevier, vol. 215(1), pages 165-183.
    7. Keith Davis & Timothy Bell & Jacqueline Miller & Derek Misurski & Bela Bapat, 2011. "Hospital costs, length of stay and mortality associated with childhood, adolescent and young Adult meningococcal disease in the US," Applied Health Economics and Health Policy, Springer, vol. 9(3), pages 197-207, May.
    8. Greg Hannsgen, 2011. "Infinite-variance, Alpha-stable Shocks in Monetary SVAR: Final Working Paper Version," Economics Working Paper Archive wp_682, Levy Economics Institute.
    9. Chunlin Wang & Paul Marriott & Pengfei Li, 2022. "A note on the coverage behaviour of bootstrap percentile confidence intervals for constrained parameters," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(7), pages 809-831, October.
    10. Ekaterina Oparina & Sorawoot Srisuma, 2022. "Analyzing Subjective Well-Being Data with Misclassification," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(2), pages 730-743, April.
    11. Jacques Muthusi & Samuel Mwalili & Peter Young, 2019. "%svy_logistic_regression: A generic SAS macro for simple and multiple logistic regression and creating quality publication-ready tables using survey or non-survey data," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-14, September.
    12. Sauer, J., 2007. "Monotonicity and Curvature – A Bootstrapping Approach," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 42, March.
    13. Michael Jansson & Demian Pouzo, 2017. "Towards a General Large Sample Theory for Regularized Estimators," Papers 1712.07248, arXiv.org, revised Jul 2020.
    14. Boswijk, H. Peter & Cavaliere, Giuseppe & Georgiev, Iliyan & Rahbek, Anders, 2021. "Bootstrapping non-stationary stochastic volatility," Journal of Econometrics, Elsevier, vol. 224(1), pages 161-180.
    15. Ian W. McKeague & Min Qian, 2015. "An Adaptive Resampling Test for Detecting the Presence of Significant Predictors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1422-1433, December.
    16. Hounyo, Ulrich & Varneskov, Rasmus T., 2017. "A local stable bootstrap for power variations of pure-jump semimartingales and activity index estimation," Journal of Econometrics, Elsevier, vol. 198(1), pages 10-28.
    17. Andrews, Donald W.K. & Guggenberger, Patrik, 2009. "Validity Of Subsampling And “Plug-In Asymptotic” Inference For Parameters Defined By Moment Inequalities," Econometric Theory, Cambridge University Press, vol. 25(3), pages 669-709, June.
    18. Berkowitz, Daniel & Caner, Mehmet & Fang, Ying, 2008. "Are "Nearly Exogenous Instruments" reliable?," Economics Letters, Elsevier, vol. 101(1), pages 20-23, October.
    19. Frazis, Harley & Loewenstein, Mark A., 2003. "Estimating linear regressions with mismeasured, possibly endogenous, binary explanatory variables," Journal of Econometrics, Elsevier, vol. 117(1), pages 151-178, November.
    20. Lee, Hsing-fen & Miozzo, Marcela & Laredo, Philippe, 2010. "Career patterns and competences of PhDs in science and engineering in the knowledge economy: The case of graduates from a UK research-based university," Research Policy, Elsevier, vol. 39(7), pages 869-881, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:054:i01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.