IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v033i05.html
   My bibliography  Save this article

Measures of Analysis of Time Series (MATS): A MATLAB Toolkit for Computation of Multiple Measures on Time Series Data Bases

Author

Listed:
  • Kugiumtzis, Dimitris
  • Tsimpiris, Alkiviadis

Abstract

In many applications, such as physiology and finance, large time series data bases are to be analyzed requiring the computation of linear, nonlinear and other measures. Such measures have been developed and implemented in commercial and freeware softwares rather selectively and independently. The Measures of Analysis of Time Series (MATS) MATLAB toolkit is designed to handle an arbitrary large set of scalar time series and compute a large variety of measures on them, allowing for the specification of varying measure parameters as well. The variety of options with added facilities for visualization of the results support different settings of time series analysis, such as the detection of dynamics changes in long data records, resampling (surrogate or bootstrap) tests for independence and linearity with various test statistics, and discrimination power of different measures and for different combinations of their parameters. The basic features of MATS are presented and the implemented measures are briefly described. The usefulness of MATS is illustrated on some empirical examples along with screenshots.

Suggested Citation

  • Kugiumtzis, Dimitris & Tsimpiris, Alkiviadis, 2010. "Measures of Analysis of Time Series (MATS): A MATLAB Toolkit for Computation of Multiple Measures on Time Series Data Bases," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i05).
  • Handle: RePEc:jss:jstsof:v:033:i05
    DOI: http://hdl.handle.net/10.18637/jss.v033.i05
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v033i05/v33i05.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v033i05/MATS.zip
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v033i05/eeg.zip
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v033.i05?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Garcia-Ferrer, Antonio & Queralt, Ricardo A., 1998. "Can univariate models forecast turning points in seasonal economic time series?," International Journal of Forecasting, Elsevier, vol. 14(4), pages 433-446, December.
    2. Wiston Adrian Risso, 2009. "The informational efficiency: the emerging markets versus the developed markets," Applied Economics Letters, Taylor & Francis Journals, vol. 16(5), pages 485-487.
    3. Marc Hallin & Madan Lal Puri, 1992. "Rank tests for time-series analysis: a survey," ULB Institutional Repository 2013/2229, ULB -- Universite Libre de Bruxelles.
    4. Kugiumtzis Dimitris, 2008. "Evaluation of Surrogate and Bootstrap Tests for Nonlinearity in Time Series," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(1), pages 1-26, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benbachir, Saâd & El Alaoui, Marwane, 2011. "A Multifractal Detrended Fluctuation Analysis of the Moroccan Stock Exchange," MPRA Paper 49003, University Library of Munich, Germany.
    2. Iliopoulos, A.C. & Nikolaidis, N.S. & Aifantis, E.C., 2015. "Portevin–Le Chatelier effect and Tsallis nonextensive statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 509-518.
    3. Kostić, Srđan & Vasović, Nebojša & Perc, Matjaž & Toljić, Marinko & Nikolić, Dobrica, 2013. "Stochastic nature of earthquake ground motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4134-4145.
    4. Srđan Kostić & Matjaž Perc & Nebojša Vasović & Slobodan Trajković, 2013. "Predictions of Experimentally Observed Stochastic Ground Vibrations Induced by Blasting," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-13, December.
    5. Gkarlaouni, Charikleia & Lasocki, Stanislaw & Papadimitriou, Eleftheria & George, Tsaklidis, 2017. "Hurst analysis of seismicity in Corinth rift and Mygdonia graben (Greece)," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 30-42.
    6. Chen, Wei-Shing, 2011. "Use of recurrence plot and recurrence quantification analysis in Taiwan unemployment rate time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(7), pages 1332-1342.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:jss:jstsof:33:i05 is not listed on IDEAS
    2. Marcelo Fernandes & Breno Neri, 2010. "Nonparametric Entropy-Based Tests of Independence Between Stochastic Processes," Econometric Reviews, Taylor & Francis Journals, vol. 29(3), pages 276-306.
    3. Ortiz-Cruz, Alejandro & Rodriguez, Eduardo & Ibarra-Valdez, Carlos & Alvarez-Ramirez, Jose, 2012. "Efficiency of crude oil markets: Evidences from informational entropy analysis," Energy Policy, Elsevier, vol. 41(C), pages 365-373.
    4. Andrey Shternshis & Piero Mazzarisi & Stefano Marmi, 2022. "Efficiency of the Moscow Stock Exchange before 2022," Papers 2207.10476, arXiv.org, revised Jul 2022.
    5. Garcia-Ferrer, Antonio & Bujosa-Brun, Marcos, 2000. "Forecasting OECD industrial turning points using unobserved components models with business survey data," International Journal of Forecasting, Elsevier, vol. 16(2), pages 207-227.
    6. Li Wang & Xing-Lu Gao & Wei-Xing Zhou, 2023. "Testing For Intrinsic Multifractality In The Global Grain Spot Market Indices: A Multifractal Detrended Fluctuation Analysis," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 31(07), pages 1-24.
    7. Dufour, Jean-Marie & Farhat, Abdeljelil & Hallin, Marc, 2006. "Distribution-free bounds for serial correlation coefficients in heteroskedastic symmetric time series," Journal of Econometrics, Elsevier, vol. 130(1), pages 123-142, January.
    8. Nada Kulendran & Kevin K.F. Wong, 2009. "Predicting Quarterly Hong Kong Tourism Demand Growth Rates, Directional Changes and Turning Points with Composite Leading Indicators," Tourism Economics, , vol. 15(2), pages 307-322, June.
    9. Lucio Maria Calcagnile & Fulvio Corsi & Stefano Marmi, 2020. "Entropy and Efficiency of the ETF Market," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 143-184, January.
    10. Aurelio F. Bariviera & Luciano Zunino & Osvaldo A. Rosso, 2016. "Crude Oil Market And Geopolitical Events: An Analysis Based On Information-Theory-Based Quantifiers," Fuzzy Economic Review, International Association for Fuzzy-set Management and Economy (SIGEF), vol. 21(1), pages 41-51, May.
    11. Marc Hallin & Khalid Rifi, 1997. "A Berry-Esséen Theorem for Serial Rank Statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 49(4), pages 777-799, December.
    12. Pinkse, Joris, 1998. "A consistent nonparametric test for serial independence," Journal of Econometrics, Elsevier, vol. 84(2), pages 205-231, June.
    13. Papapetrou, M. & Kugiumtzis, D., 2013. "Markov chain order estimation with conditional mutual information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(7), pages 1593-1601.
    14. Hallin, M. & Vermandele, C. & Werker, B.J.M., 2003. "Serial and Nonserial Sign-and-Rank Statistics : Asymptotic Representation and Asymptotic Normality," Discussion Paper 2003-23, Tilburg University, Center for Economic Research.
    15. Benedetto, F. & Giunta, G. & Mastroeni, L., 2016. "On the predictability of energy commodity markets by an entropy-based computational method," Energy Economics, Elsevier, vol. 54(C), pages 302-312.
    16. John Halley & Dimitris Kugiumtzis, 2011. "Nonparametric testing of variability and trend in some climatic records," Climatic Change, Springer, vol. 109(3), pages 549-568, December.
    17. Kulikova, Maria V. & Taylor, David R. & Kulikov, Gennady Yu., 2024. "Evolving efficiency of the BRICS markets," Economic Systems, Elsevier, vol. 48(1).
    18. Basu, Anup K. & Huang-Jones, Jason, 2015. "The performance of diversified emerging market equity funds," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 35(C), pages 116-131.
    19. Alexandru Todea & Dorina Lazar, 2012. "Global Crisis and Relative Efficiency: Empirical Evidence from Central and Eastern European Stock Markets," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 4(1), pages 045-053, June.
    20. Boubaker, Sabri & Goodell, John W. & Pandey, Dharen Kumar & Kumari, Vineeta, 2022. "Heterogeneous impacts of wars on global equity markets: Evidence from the invasion of Ukraine," Finance Research Letters, Elsevier, vol. 48(C).
    21. Bariviera, Aurelio F. & Guercio, M. Belén & Martinez, Lisana B. & Rosso, Osvaldo A., 2016. "Libor at crossroads: Stochastic switching detection using information theory quantifiers," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 172-182.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:033:i05. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.