IDEAS home Printed from https://ideas.repec.org/a/jof/jforec/v28y2009i2p89-101.html
   My bibliography  Save this article

ARFIMA approximation and forecasting of the limiting aggregate structure of long-memory process

Author

Listed:
  • K. S. Man

    (Western Illinois University, Illinois, USA)

  • G. C. Tiao

    (University of Chicago, Illinois, USA)

Abstract

This article studies Man and Tiao's (2006) low-order autoregressive fractionally integrated moving-average (ARFIMA) approximation to Tsai and Chan's (2005b) limiting aggregate structure of the long-memory process. In matching the autocorrelations, we demonstrate that the approximation works well, especially for larger d values. In computing autocorrelations over long lags for larger d value, using the exact formula one might encounter numerical problems. The use of the ARFIMA(0, d , &dmacr; 1 ) model provides a useful alternative to compute the autocorrelations as a really close approximation. In forecasting future aggregates, we demonstrate the close performance of using the ARFIMA(0, d , &dmacr; 1 ) model and the exact aggregate structure. In practice, this provides a justification for the use of a low-order ARFIMA model in predicting future aggregates of long-memory process. Copyright © 2008 John Wiley & Sons, Ltd.

Suggested Citation

  • K. S. Man & G. C. Tiao, 2009. "ARFIMA approximation and forecasting of the limiting aggregate structure of long-memory process," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(2), pages 89-101.
  • Handle: RePEc:jof:jforec:v:28:y:2009:i:2:p:89-101
    DOI: 10.1002/for.1086
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/for.1086
    File Function: Link to full text; subscription required
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.1086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Man, K.S. & Tiao, G.C., 2006. "Aggregation effect and forecasting temporal aggregates of long memory processes," International Journal of Forecasting, Elsevier, vol. 22(2), pages 267-281.
    2. Man, K. S., 2003. "Long memory time series and short term forecasts," International Journal of Forecasting, Elsevier, vol. 19(3), pages 477-491.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Man Kasing, 2010. "Extended Fractional Gaussian Noise and Simple ARFIMA Approximations," Journal of Time Series Econometrics, De Gruyter, vol. 2(1), pages 1-26, September.
    2. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    3. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    4. J. Eduardo Vera-Vald'es, 2018. "Nonfractional Memory: Filtering, Antipersistence, and Forecasting," Papers 1801.06677, arXiv.org.
    5. Reisen, Valdério A. & Zamprogno, Bartolomeu & Palma, Wilfredo & Arteche, Josu, 2014. "A semiparametric approach to estimate two seasonal fractional parameters in the SARFIMA model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 98(C), pages 1-17.
    6. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2003. "Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility," PIER Working Paper Archive 03-025, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 01 Sep 2003.
    7. Florian Heinen & Philipp Sibbertsen & Robinson Kruse, 2009. "Forecasting long memory time series under a break in persistence," CREATES Research Papers 2009-53, Department of Economics and Business Economics, Aarhus University.
    8. Ramirez, Octavio A., 2011. "Conclusive Evidence on the Benefits of Temporal Disaggregation to Improve the Precision of Time Series Model Forecasts," Faculty Series 113520, University of Georgia, Department of Agricultural and Applied Economics.
    9. Hassler Uwe & Tsai Henghsiu, 2013. "Asymptotic Behavior of Temporal Aggregates in the Frequency Domain," Journal of Time Series Econometrics, De Gruyter, vol. 5(1), pages 47-60, January.
    10. Hassler, Uwe, 2011. "Estimation of fractional integration under temporal aggregation," Journal of Econometrics, Elsevier, vol. 162(2), pages 240-247, June.
    11. Nidhi Choudhary & Girish K. Nair & Harsh Purohit, 2015. "Volatility In Copper Prices In India," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 1-26, December.
    12. Tao Yin & Yiming Wang, 2019. "Predicting the Price of WTI Crude Oil Using ANN and Chaos," Sustainability, MDPI, vol. 11(21), pages 1-14, October.
    13. Lux, Thomas & Morales-Arias, Leonardo, 2010. "Relative forecasting performance of volatility models: Monte Carlo evidence," Kiel Working Papers 1582, Kiel Institute for the World Economy (IfW Kiel).
    14. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    15. Leonardo Souza & Jeremy Smith & Reinaldo Souza, 2006. "Convex combinations of long memory estimates from different sampling rates," Computational Statistics, Springer, vol. 21(3), pages 399-413, December.
    16. Lux, Thomas & Kaizoji, Taisei, 2007. "Forecasting volatility and volume in the Tokyo Stock Market: Long memory, fractality and regime switching," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 1808-1843, June.
    17. John Galbraith & Greg Tkacz, 2007. "How Far Can Forecasting Models Forecast? Forecast Content Horizons for Some Important Macroeconomic Variables," Staff Working Papers 07-1, Bank of Canada.
    18. Per Frederiksen & Frank S. Nielsen, 2008. "Estimation of Dynamic Models with Nonparametric Simulated Maximum Likelihood," CREATES Research Papers 2008-59, Department of Economics and Business Economics, Aarhus University.
    19. Jinliang Li & Chunchi Wu, 2006. "Daily Return Volatility, Bid-Ask Spreads, and Information Flow: Analyzing the Information Content of Volume," The Journal of Business, University of Chicago Press, vol. 79(5), pages 2697-2740, September.
    20. Lux, Thomas & Kaizoji, Taisei, 2004. "Forecasting volatility and volume in the Tokyo stock market: The advantage of long memory models," Economics Working Papers 2004-05, Christian-Albrechts-University of Kiel, Department of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:28:y:2009:i:2:p:89-101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.