IDEAS home Printed from https://ideas.repec.org/a/ags/agreko/345272.html
   My bibliography  Save this article

Adoption of genetically modified crops in South Africa: Effects on wholesale maize prices

Author

Listed:
  • Abidoye, Babatunde O
  • Mabaya, Edward

Abstract

The ability of genetically modified (GM) crops to increase yields and reduce use of pesticides is well established. Based on food security needs and the central role of agriculture, Africa may stand to benefit from green biotechnology given the low agricultural productivity and the looming food crises in most urban areas. However, the adoption of GM crops in Africa has been slow and limited to a handful of countries. The primary objective of this paper is to evaluate the impact of GM maize adoption in South Africa by looking at wholesale spot prices. We apply a threshold autoregressive model to time series data on the price of maize and GM adoption rates in South Africa to address the following questions: (1) Does the adoption of GM maize excite the growth rate of price of maize in South Africa; (2) Does the error variance of the maize price growth rate exhibit regime-switching behaviour to impact the volatility? The results show evidence that the adoption of GM maize influences the dynamics of the maize price growth rate in South Africa. Further, there is strong evidence that the error variance exhibits regime-switching behaviour with the posterior mean for the error variance in the first regime about twice as large as that of the second regime.

Suggested Citation

  • Abidoye, Babatunde O & Mabaya, Edward, 2014. "Adoption of genetically modified crops in South Africa: Effects on wholesale maize prices," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 53(01), February.
  • Handle: RePEc:ags:agreko:345272
    DOI: 10.22004/ag.econ.345272
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/345272/files/Adoption%20of%20genetically%20modified%20crops%20in%20South%20Africa%20%20Effects%20on%20wholesale%20maize%20prices.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.345272?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Koop,Gary & Poirier,Dale J. & Tobias,Justin L., 2007. "Bayesian Econometric Methods," Cambridge Books, Cambridge University Press, number 9780521671736, June.
    2. Pray, Carl & Ma, Danmeng & Huang, Jikun & Qiao, Fangbin, 2001. "Impact of Bt Cotton in China," World Development, Elsevier, vol. 29(5), pages 813-825, May.
    3. Cathy W. S. Chen & Jack C. Lee, 1995. "Bayesian Inference Of Threshold Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 16(5), pages 483-492, September.
    4. Potter, Simon M, 1995. "A Nonlinear Approach to US GNP," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(2), pages 109-125, April-Jun.
    5. Chan,Joshua & Koop,Gary & Poirier,Dale J. & Tobias,Justin L., 2019. "Bayesian Econometric Methods," Cambridge Books, Cambridge University Press, number 9781108423380, January.
    6. John Geweke & Nobuhiko Terui, 1993. "Bayesian Threshold Autoregressive Models For Nonlinear Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 14(5), pages 441-454, September.
    7. Babatunde O. Abidoye & Marlene Labuschagne, 2014. "The transmission of world maize price to South African maize market: a threshold cointegration approach," Agricultural Economics, International Association of Agricultural Economists, vol. 45(4), pages 501-512, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:ags:ijag24:345272 is not listed on IDEAS
    2. Babatunde O Abidoye & Edward Mabaya, 2014. "Adoption of genetically modified crops in South Africa: Effects on wholesale maize prices," Agrekon, Taylor & Francis Journals, vol. 53(1), pages 104-123, March.
    3. Ólan T. Henry & Peter M. Summers, 2000. "Australian Economic Growth: Nonlinearities and International Influences," The Economic Record, The Economic Society of Australia, vol. 76(235), pages 365-373, December.
    4. Adnan Haider Bukhari & Safdar Ullah Khan, 2008. "A Small Open Economy DSGE Model for Pakistan," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 47(4), pages 963-1008.
    5. Richard S. J. Tol & In Chang Hwang & Frédéric Reynès, 2012. "The Effect of Learning on Climate Policy under Fat-tailed Uncertainty," Working Paper Series 5312, Department of Economics, University of Sussex Business School.
    6. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.
    7. Martinovici, A., 2019. "Revealing attention - how eye movements predict brand choice and moment of choice," Other publications TiSEM 7dca38a5-9f78-4aee-bd81-c, Tilburg University, School of Economics and Management.
    8. Wang, Hong & Forbes, Catherine S. & Fenech, Jean-Pierre & Vaz, John, 2020. "The determinants of bank loan recovery rates in good times and bad – New evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 177(C), pages 875-897.
    9. Francesco Furlanetto & Francesco Ravazzolo & Samad Sarferaz, 2019. "Identification of Financial Factors in Economic Fluctuations," The Economic Journal, Royal Economic Society, vol. 129(617), pages 311-337.
    10. Igari, Ryosuke & Hoshino, Takahiro, 2018. "A Bayesian data combination approach for repeated durations under unobserved missing indicators: Application to interpurchase-timing in marketing," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 150-166.
    11. Florian Huber, 2014. "Forecasting Exchange Rates using Bayesian Threshold Vector Autoregressions," Economics Bulletin, AccessEcon, vol. 34(3), pages 1687-1695.
    12. Liu, De-Chih & Chang, Yu-Chien, 2022. "Systematic variations in exchange rate returns," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 569-583.
    13. Hasan, Iftekhar & Horvath, Roman & Mares, Jan, 2020. "Finance and wealth inequality," Journal of International Money and Finance, Elsevier, vol. 108(C).
    14. Obryan Poyser, 2017. "Exploring the determinants of Bitcoin's price: an application of Bayesian Structural Time Series," Papers 1706.01437, arXiv.org.
    15. Rob Luginbuhl, 2020. "Estimation of the Financial Cycle with a Rank-Reduced Multivariate State-Space Model," CPB Discussion Paper 409, CPB Netherlands Bureau for Economic Policy Analysis.
    16. Roman Horvath & Marek Rusnak & Katerina Smidkova & Jan Zapal, 2014. "The dissent voting behaviour of central bankers: what do we really know?," Applied Economics, Taylor & Francis Journals, vol. 46(4), pages 450-461, February.
    17. Bin Jiang & Anastasios Panagiotelis & George Athanasopoulos & Rob Hyndman & Farshid Vahid, 2016. "Bayesian Rank Selection in Multivariate Regression," Monash Econometrics and Business Statistics Working Papers 6/16, Monash University, Department of Econometrics and Business Statistics.
    18. Badi H. Baltagi & Georges Bresson & Anoop Chaturvedi & Guy Lacroix, 2022. "Robust Dynamic Space-Time Panel Data Models Using ε-contamination: An Application to Crop Yields and Climate Change," Center for Policy Research Working Papers 254, Center for Policy Research, Maxwell School, Syracuse University.
    19. Joshua C. C. Chan, 2018. "Specification tests for time-varying parameter models with stochastic volatility," Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 807-823, September.
    20. Baştürk, Nalan & Grassi, Stefano & Hoogerheide, Lennart & Opschoor, Anne & van Dijk, Herman K., 2017. "The R Package MitISEM: Efficient and Robust Simulation Procedures for Bayesian Inference," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 79(i01).
    21. Koop, Gary, 1996. "Parameter uncertainty and impulse response analysis," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 135-149.

    More about this item

    Keywords

    Agribusiness;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:agreko:345272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aeasaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.