IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2017-7-3.html
   My bibliography  Save this article

Agent Scheduling in Opinion Dynamics: A Taxonomy and Comparison Using Generalized Models

Author

Abstract

Opinion dynamics models are an important field of study within the agent-based modeling community. Agent scheduling elements within existing opinion dynamics models vary but are largely unjustified and only minimally explained. Furthermore, previous research on the impact of scheduling is scarce, partially due to a lack of a common taxonomy with which to discuss and compare schedules. The Synchrony, Actor type, Scale (SAS) taxonomy is presented, which aims to provide a common lexicon for agent scheduling in opinion dynamics models. This is demonstrated using a generalized repeated averaging model (GRAM) and a generalized bounded confidence model (GBCM). Significant differences in model outcomes with varied schedules are given, along with the results of intentional model biasing using only schedule variation. We call on opinion dynamics modelers to make explicit their choice of schedule and to justify that choice based on realistic social phenomena.

Suggested Citation

  • Christopher Weimer & J.O. Miller & Raymond Hill & Douglas Hodson, 2019. "Agent Scheduling in Opinion Dynamics: A Taxonomy and Comparison Using Generalized Models," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 22(4), pages 1-5.
  • Handle: RePEc:jas:jasssj:2017-7-3
    as

    Download full text from publisher

    File URL: https://www.jasss.org/22/4/5/5.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guillaume Deffuant & Frederic Amblard & Gérard Weisbuch, 2002. "How Can Extremism Prevail? a Study Based on the Relative Agreement Interaction Model," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(4), pages 1-1.
    2. Guillaume Deffuant & David Neau & Frederic Amblard & Gérard Weisbuch, 2000. "Mixing beliefs among interacting agents," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 3(01n04), pages 87-98.
    3. Wander Jager & Frédéric Amblard, 2005. "Uniformity, Bipolarization and Pluriformity Captured as Generic Stylized Behavior with an Agent-Based Simulation Model of Attitude Change," Computational and Mathematical Organization Theory, Springer, vol. 10(4), pages 295-303, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weimer, Christopher W. & Miller, J.O. & Hill, Raymond R. & Hodson, Douglas D., 2022. "An opinion dynamics model of meta-contrast with continuous social influence forces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    2. Agnieszka Kowalska-Styczeń & Krzysztof Malarz, 2020. "Noise induced unanimity and disorder in opinion formation," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shane T. Mueller & Yin-Yin Sarah Tan, 2018. "Cognitive perspectives on opinion dynamics: the role of knowledge in consensus formation, opinion divergence, and group polarization," Journal of Computational Social Science, Springer, vol. 1(1), pages 15-48, January.
    2. Weimer, Christopher W. & Miller, J.O. & Hill, Raymond R. & Hodson, Douglas D., 2022. "An opinion dynamics model of meta-contrast with continuous social influence forces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    3. Laurent Salzarulo, 2006. "A Continuous Opinion Dynamics Model Based on the Principle of Meta-Contrast," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 9(1), pages 1-13.
    4. George Butler & Gabriella Pigozzi & Juliette Rouchier, 2019. "Mixing Dyadic and Deliberative Opinion Dynamics in an Agent-Based Model of Group Decision-Making," Complexity, Hindawi, vol. 2019, pages 1-31, August.
    5. Daron Acemoglu & Asuman Ozdaglar, 2011. "Opinion Dynamics and Learning in Social Networks," Dynamic Games and Applications, Springer, vol. 1(1), pages 3-49, March.
    6. Boschi, Gioia & Cammarota, Chiara & Kühn, Reimer, 2021. "Opinion dynamics with emergent collective memory: The impact of a long and heterogeneous news history," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 569(C).
    7. Ghezelbash, Ehsan & Yazdanpanah, Mohammad Javad & Asadpour, Masoud, 2019. "Polarization in cooperative networks through optimal placement of informed agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    8. Pedraza, Lucía & Pinasco, Juan Pablo & Saintier, Nicolas & Balenzuela, Pablo, 2021. "An analytical formulation for multidimensional continuous opinion models," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    9. Shyam Gouri Suresh & Scott Jeffrey, 2017. "The Consequences of Social Pressures on Partisan Opinion Dynamics," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 43(2), pages 242-259, March.
    10. Takesue, Hirofumi, 2023. "Relative opinion similarity leads to the emergence of large clusters in opinion formation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    11. Zhu, Hou & Hu, Bin, 2018. "Impact of information on public opinion reversal—An agent based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 578-587.
    12. Huang, Changwei & Dai, Qionglin & Han, Wenchen & Feng, Yuee & Cheng, Hongyan & Li, Haihong, 2018. "Effects of heterogeneous convergence rate on consensus in opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 428-435.
    13. Huang, Changwei & Bian, Huanyu & Han, Wenchen, 2024. "Breaking the symmetry neutralizes the extremization under the repulsion and higher order interactions," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    14. Low, Nicholas Kah Yean & Melatos, Andrew, 2022. "Vacillating about media bias: Changing one’s mind intermittently within a network of political allies and opponents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    15. Maciel, Marcelo V. & Martins, André C.R., 2020. "Ideologically motivated biases in a multiple issues opinion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    16. Deffuant, Guillaume & Keijzer, Marijn & Banisch, Sven, 2023. "Regular access to constantly renewed online content favors radicalization of opinions," IAST Working Papers 23-154, Institute for Advanced Study in Toulouse (IAST).
    17. Trond G. Husby & Elco E. Koks, 2017. "Household migration in disaster impact analysis: incorporating behavioural responses to risk," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 287-305, May.
    18. Martins, André C.R., 2022. "Extremism definitions in opinion dynamics models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    19. Pedraza, Lucía & Pinasco, Juan Pablo & Semeshenko, Viktoriya & Balenzuela, Pablo, 2023. "Mesoscopic analytical approach in a three state opinion model with continuous internal variable," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    20. María Cecilia Gimenez & Luis Reinaudi & Ana Pamela Paz-García & Paulo Marcelo Centres & Antonio José Ramirez-Pastor, 2021. "Opinion evolution in the presence of constant propaganda: homogeneous and localized cases," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-11, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2017-7-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.