IDEAS home Printed from https://ideas.repec.org/a/ist/ibsibr/v49y2020i1p146-175.html
   My bibliography  Save this article

Modern Kredi Sınıflandırma Çalışmaları ve Metasezgisel Algoritma Uygulamaları: Sistematik Bir Derleme

Author

Listed:
  • Hazar ALTINBAŞ

    (Bankacılık ve Finans Bölümü, Beykent Üniversitesi, İstanbul, Türkiye)

Abstract

Kredi başvurularında, başvuranların temerrüde düşüp düşmeyeceklerinin başarılı şekilde tahmin edilmesi amacıyla önerilen gelişmiş analiz yöntemlerinin sayısı, özellikle Küresel Finans Krizi sonrası dönemde önemli bir artış göstermiştir. Geleneksel istatistiksel sınıflandırma yöntemlerine alternatif olarak bilgiyi, kısıtlar ve varsayımlardan bağımsız olarak doğrudan veri kümelerinden ortaya çıkarma yeteneğine sahip makine öğrenme yöntemleri kullanılmaya başlanmıştır. Bu yöntemlerin yanı sıra, sınıflandırma performansları üzerinde çok büyük iyileştirmeler sağlayan metasezgisel algoritmalar da yazında kendilerine fazlaca yer bulmaya başlamıştır. Veri saklama ve işleme kapasitelerinde yaşanan artıştan en üst düzeyde faydalanmaya yönelik olarak öğrenme yöntemleri ile metasezgisel algoritmaların birlikte kullanımları, kredi risk değerlendirme alanına büyük katkılar sağlamaktadır. Bu derleme kapsamında 2000 sonrası dönemde yazına sunulmuş olan ve metasezgisel algoritmaların yer aldığı kredi sınıflandırma çalışmaları sistematik bir süreç ile incelenmiştir. Yazında karşılaşılan sınıflandırma yöntemleri, uygulanan metasezgisel algoritmalar ile kullanım amaçları ve sınıflandırma performans değerlendirme kriterleri ele alınmış ve mevcut duruma ilişkin genel bir çerçeve oluşturulmuştur. İnceleme, metasezgisel algoritmalar ile makine öğrenme yöntemlerine yönelik artan bir ilgi olduğunu ortaya koymaktadır ancak yöntem tercihleri birkaç alternatif üzerine yoğunlaşmış durumdadır. Yeni geliştirilen metasezgisel algoritmaların ve/veya hibrit ve birlikte kullanımların alanda daha fazla yer alması gerekmektedir. Bilgisayar ve matematik bilimlerinde yaşanan gelişmeler ile paralel olarak ilerleyecek çalışmaların, yazına sürekli katkı sunmaya devam edeceğini söylemek mümkündür.

Suggested Citation

  • Hazar ALTINBAŞ, 2020. "Modern Kredi Sınıflandırma Çalışmaları ve Metasezgisel Algoritma Uygulamaları: Sistematik Bir Derleme," Istanbul Business Research, Istanbul University Business School, vol. 49(1), pages 146-175, May.
  • Handle: RePEc:ist:ibsibr:v:49:y:2020:i:1:p:146-175
    DOI: 10.26650/ibr.2020.49.0033
    as

    Download full text from publisher

    File URL: https://dergipark.org.tr/tr/download/article-file/1245711
    Download Restriction: no

    File URL: https://dergipark.org.tr/tr/pub/ibr/issue/52712/781994
    Download Restriction: no

    File URL: https://libkey.io/10.26650/ibr.2020.49.0033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hoffmann, F. & Baesens, B. & Mues, C. & Van Gestel, T. & Vanthienen, J., 2007. "Inferring descriptive and approximate fuzzy rules for credit scoring using evolutionary algorithms," European Journal of Operational Research, Elsevier, vol. 177(1), pages 540-555, February.
    2. Hazar Altinbas & Goktug Cenk Akkaya, 2017. "Improving the performance of statistical learning methods with a combined meta-heuristic for consumer credit risk assessment," Risk Management, Palgrave Macmillan, vol. 19(4), pages 255-280, November.
    3. Chen, Kuan-Yu, 2007. "Forecasting systems reliability based on support vector regression with genetic algorithms," Reliability Engineering and System Safety, Elsevier, vol. 92(4), pages 423-432.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Derhami, Shahab & Smith, Alice E., 2017. "An integer programming approach for fuzzy rule-based classification systems," European Journal of Operational Research, Elsevier, vol. 256(3), pages 924-934.
    2. Guizzardi, Andrea & Mazzocchi, Mario, 2010. "Tourism demand for Italy and the business cycle," Tourism Management, Elsevier, vol. 31(3), pages 367-377.
    3. Joonhyuck Lee & Gabjo Kim & Sangsung Park & Dongsik Jang, 2016. "Hybrid Corporate Performance Prediction Model Considering Technical Capability," Sustainability, MDPI, vol. 8(7), pages 1-13, July.
    4. Oscar Claveria & Enric Monte & Salvador Torra, 2015. "“Multiple-input multiple-output vs. single-input single-output neural network forecasting”," AQR Working Papers 201502, University of Barcelona, Regional Quantitative Analysis Group, revised Jan 2015.
    5. Lkhagvadorj Munkhdalai & Tsendsuren Munkhdalai & Oyun-Erdene Namsrai & Jong Yun Lee & Keun Ho Ryu, 2019. "An Empirical Comparison of Machine-Learning Methods on Bank Client Credit Assessments," Sustainability, MDPI, vol. 11(3), pages 1-23, January.
    6. Khatibinia, Mohsen & Javad Fadaee, Mohammad & Salajegheh, Javad & Salajegheh, Eysa, 2013. "Seismic reliability assessment of RC structures including soil–structure interaction using wavelet weighted least squares support vector machine," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 22-33.
    7. Ha-Thu Nguyen, 2015. "How is credit scoring used to predict default in China?," EconomiX Working Papers 2015-1, University of Paris Nanterre, EconomiX.
    8. Wu, Xuedong & Chang, Yanchao & Mao, Jianxu & Du, Zhaoping, 2013. "Predicting reliability and failures of engine systems by single multiplicative neuron model with iterated nonlinear filters," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 244-250.
    9. Nadia Ayed & Khemaies Bougatef, 2024. "Performance Assessment of Logistic Regression (LR), Artificial Neural Network (ANN), Fuzzy Inference System (FIS) and Adaptive Neuro-Fuzzy System (ANFIS) in Predicting Default Probability: The Case of," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1803-1835, September.
    10. Wei, Zhao & Tao, Tao & ZhuoShu, Ding & Zio, Enrico, 2013. "A dynamic particle filter-support vector regression method for reliability prediction," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 109-116.
    11. Moura, Márcio das Chagas & Zio, Enrico & Lins, Isis Didier & Droguett, Enrique, 2011. "Failure and reliability prediction by support vector machines regression of time series data," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1527-1534.
    12. Hussein A. Abdou & John Pointon, 2011. "Credit Scoring, Statistical Techniques And Evaluation Criteria: A Review Of The Literature," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(2-3), pages 59-88, April.
    13. Peng, Bo & Song, Haiyan & Crouch, Geoffrey I., 2014. "A meta-analysis of international tourism demand forecasting and implications for practice," Tourism Management, Elsevier, vol. 45(C), pages 181-193.
    14. Liu, Yuan & Wang, RuiXue, 2016. "Study on network traffic forecast model of SVR optimized by GAFSA," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 153-159.
    15. Enrique L Droguett & Isis D Lins & Márcio C Moura & Enrico Zio & Carlos M Jacinto, 2015. "Variable selection and uncertainty analysis of scale growth rate under pre-salt oil wells conditions using support vector regression," Journal of Risk and Reliability, , vol. 229(4), pages 319-326, August.
    16. Rong, Jia & Vu, Huy Quan & Law, Rob & Li, Gang, 2012. "A behavioral analysis of web sharers and browsers in Hong Kong using targeted association rule mining," Tourism Management, Elsevier, vol. 33(4), pages 731-740.
    17. Li, Cheng & Zheng, Weimin & Ge, Peng, 2022. "Tourism demand forecasting with spatiotemporal features," Annals of Tourism Research, Elsevier, vol. 94(C).
    18. Sun, Yue & Chai, Nana & Dong, Yizhe & Shi, Baofeng, 2022. "Assessing and predicting small industrial enterprises’ credit ratings: A fuzzy decision-making approach," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1158-1172.
    19. Joonhyuck Lee & Dongsik Jang & Sangsung Park, 2017. "Deep Learning-Based Corporate Performance Prediction Model Considering Technical Capability," Sustainability, MDPI, vol. 9(6), pages 1-12, May.
    20. Roy, Atin & Chakraborty, Subrata, 2023. "Support vector machine in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 233(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ist:ibsibr:v:49:y:2020:i:1:p:146-175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ertugrul YASAR (email available below). General contact details of provider: https://edirc.repec.org/data/isisttr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.