IDEAS home Printed from https://ideas.repec.org/a/ist/ekoist/v31y2019i0p77-93.html
   My bibliography  Save this article

Ülke Kredi Notlarını Etkileyen Faktörlerin Çeşitli Sınıflandırma Analizleri ile İncelenmesi

Author

Listed:
  • Ayşe Mine ÖRENDER

    (Marmara Üniversitesi, Sosyal Bilimler Enstitüsü, İstatistik Tezli Yüksek Lisans Programı, İstanbul, Türkiye)

  • Selay GİRAY YAKUT

    (Marmara Üniversitesi, İktisat Fakültesi, Ekonometri Bölümü, İstatistik Anabilim Dalı, İstanbul, Türkiye)

Abstract

Kredi derecelendirmeleri, Standard and Poor’s Corporation, Moody’s Yatırımcı Servisi ve Fitch Ratings gibi uluslararası derecelendirme kuruluşları tarafından sağlanan kredi riskinin alfabetik göstergeleridir. Kredi notları hükümetlerin kamu borcunu zamanında geri ödeme kabiliyetinin ve istekliliğinin bir değerlendirmesi olduğundan, yatırımcılar, borç veren kuruluşlar ve ilgili piyasa katılımcıları, yayınlanan raporlar doğrultusunda yatırım kararları alabilmektedir. Bu nedenle verilen notlar oldukça önemlidir. Bu çalışmada, 85 ülkenin 2017 yılına ait verisi için lojistik regresyon analizi ve yapay sinir ağları tekniklerinden yararlanılarak Moody’s kredi derecelendirme kuruluşunun ülke kredi notlarını verirken baskın olarak hangi faktörleri ele aldığı belirlenmiş ve verilen kredi notlarına göre ülkeler yatırım yapılabilirlik durumuna göre sınıflara ayrılmıştır. Analiz sonucunda, kişi başına düşen gayrisafi yurtiçi hasıla (GSYİH), enflasyon, genel hükümet faiz dışı dengesi / GSYİH, devlet borcu, dış ödemeler ve resmi Forex rezervleri değişkenleri istatistiksel olarak anlamlı bulunmuş, lojistik regresyon modelinin doğru sınıflandırma oranının %90,6 ve yapay sinir ağları modelinin doğru sınıflandırma oranının %88 olduğu sonucuna varılmıştır. Türkiye zaman zaman yatırım “yapılabilir ülkeler” kategorisinde yer alsa da, kredi derecelendirme kuruluşu Moody’s, 2018 Ağustos ayında Türkiye’nin kredi notunu Ba2’den Ba3’e, 2019 Haziran ayında ise B1’e düşürerek not görünümünü durağandan negatife düşürmüştür. Analiz sonucunda da buna paralel olarak kredi notları açısından Türkiye’nin “yatırım yapılamaz” sınıfına dahil edildiği belirlenmiştir.

Suggested Citation

  • Ayşe Mine ÖRENDER & Selay GİRAY YAKUT, 2019. "Ülke Kredi Notlarını Etkileyen Faktörlerin Çeşitli Sınıflandırma Analizleri ile İncelenmesi," EKOIST Journal of Econometrics and Statistics, Istanbul University, Faculty of Economics, vol. 31(0), pages 77-93, December.
  • Handle: RePEc:ist:ekoist:v:31:y:2019:i:0:p:77-93
    DOI: 10.26650/ekoist.2019.31.0019
    as

    Download full text from publisher

    File URL: https://dergipark.org.tr/tr/download/article-file/910229
    Download Restriction: no

    File URL: https://dergipark.org.tr/tr/pub/ekoist/issue/50720/667771
    Download Restriction: no

    File URL: https://libkey.io/10.26650/ekoist.2019.31.0019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gabriel Caldas Montes & Diego S. P. Oliveira & Helder Ferreira Mendonça, 2016. "Sovereign Credit Ratings in Developing Economies: New Empirical Assessment," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 21(4), pages 382-397, October.
    2. Bissoondoyal-Bheenick, Emawtee & Brooks, Robert & Yip, Angela Y.N., 2006. "Determinants of sovereign ratings: A comparison of case-based reasoning and ordered probit approaches," Global Finance Journal, Elsevier, vol. 17(1), pages 136-154, September.
    3. David F. Tennant & Marlon R. Tracey, 2016. "Sovereign Debt and Credit Rating Bias," Palgrave Macmillan Books, Palgrave Macmillan, number 978-1-137-39150-6, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sami Ben Mim & Ridha Nouira & Fatma Mabrouk, 2023. "Non-Linear Determinants of Developing Countries’ Sovereign Ratings: Evidence from a Panel Threshold Regression (PTR) Model," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    2. Erdem, Orhan & Varli, Yusuf, 2014. "Understanding the sovereign credit ratings of emerging markets," Emerging Markets Review, Elsevier, vol. 20(C), pages 42-57.
    3. António Afonso & Pedro Gomes & Philipp Rother, 2006. "What “Hides” Behind Sovereign Debt Ratings?," Working Papers Department of Economics 2006/35, ISEG - Lisbon School of Economics and Management, Department of Economics, Universidade de Lisboa.
    4. Diego Silveira Pacheco de Oliveira & Gabriel Caldas Montes, 2020. "Sovereign credit news and disagreement in expectations about the exchange rate: evidence from Brazil," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 48(3), pages 660-698, August.
    5. Unver, Mustafa & Dogru, Bulent, 2015. "The Determinants of Economic Fragility: Case of the Fragile Five Countries," MPRA Paper 68734, University Library of Munich, Germany, revised 2015.
    6. Teixeira, João C.A. & Silva, Francisco J.F. & Ferreira, Manuel B.S. & Vieira, José A.C., 2018. "Sovereign credit rating determinants under financial crises," Global Finance Journal, Elsevier, vol. 36(C), pages 1-13.
    7. Emilian C. Miricescu & Lucian Ţâţu & Delia Cornea, 2016. "The Determinants of the Sovereign Debt Rating: Evidence for the European Union Countries," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 50(1), pages 175-188.
    8. Gerald J. Lobo & Luc Paugam & Hervé Stolowy & Pierre Astolfi, 2017. "The Effect of Business and Financial Market Cycles on Credit Ratings: Evidence from the Last Two Decades," Abacus, Accounting Foundation, University of Sydney, vol. 53(1), pages 59-93, March.
    9. Demoussis, Michael & Drakos, Konstantinos & Giannakopoulos, Nicholas, 2016. "The Impact of Sovereign Ratings on Eurozone SMEs Credit Rationing," MPRA Paper 76364, University Library of Munich, Germany.
    10. Robert V. Breunig & Tse Chern Chia, 2015. "Sovereign Ratings and Oil-Exporting Countries: The Effect of High Oil Prices on Ratings," International Review of Finance, International Review of Finance Ltd., vol. 15(1), pages 113-138, March.
    11. Montes, Gabriel Caldas & Valladares, Matheus & de Moraes, Claudio Oliveira, 2021. "Impacts of the sovereign risk perception on financial stability: Evidence from Brazil," The Quarterly Review of Economics and Finance, Elsevier, vol. 81(C), pages 358-369.
    12. Srđan Jelinek & Pavle Milošević & Aleksandar Rakićević & Ana Poledica & Bratislav Petrović, 2022. "A Novel IBA-DE Hybrid Approach for Modeling Sovereign Credit Ratings," Mathematics, MDPI, vol. 10(15), pages 1-21, July.
    13. Montes, Gabriel Caldas & Nicolay, Rodolfo & Pereira, Flavio, 2022. "Does fiscal sentiment matter for sovereign risk?," The Quarterly Review of Economics and Finance, Elsevier, vol. 86(C), pages 18-30.
    14. Bales, Kyle & Malikane, Christopher, 2020. "The effect of credit ratings on emerging market volatility," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 65(C).
    15. Colin Ellis, 2022. "Are Sovereign Ratings Biased Against Africa?," Applied Economics and Finance, Redfame publishing, vol. 9(1), pages 29-36, December.
    16. Emara, Noha, 2012. "Inflation volatility, financial institutions and sovereign debt rating," MPRA Paper 68688, University Library of Munich, Germany.
    17. Hansen, Daniel, 2020. "The effectiveness of fiscal institutions: International financial flogging or domestic constraint?," European Journal of Political Economy, Elsevier, vol. 63(C).
    18. LaGarda, Guillermo & Prat, Jordi & Solera, Marco & Beverinotti, Javier, 2016. "Debt and Credit Quality in Central America, Panama, and the Dominican Republic," MPRA Paper 74163, University Library of Munich, Germany.
    19. Konopczak, Karolina & Konopczak, Michał, 2017. "Impact of International capital flows on emerging markets’ sovereign risk premium – demand vs. vulnerability effect," Finance Research Letters, Elsevier, vol. 23(C), pages 239-245.
    20. Zoran Ivanovic & Sinisa Bogdan & Suzana Baresa, 2015. "Modeling and Estimating Shadow Sovereign Ratings," Contemporary Economics, University of Economics and Human Sciences in Warsaw., vol. 9(3), September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ist:ekoist:v:31:y:2019:i:0:p:77-93. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ertugrul YASAR (email available below). General contact details of provider: https://edirc.repec.org/data/ifisttr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.