IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v49y2015i2p295-310.html
   My bibliography  Save this article

A Maximum Cluster Algorithm for Checking the Feasibility of Dial-A-Ride Instances

Author

Listed:
  • Lauri Häme

    (Department of Mathematics and Systems Analysis, Aalto University School of Science, 00076 Aalto, Finland)

  • Harri Hakula

    (Department of Mathematics and Systems Analysis, Aalto University School of Science, 00076 Aalto, Finland)

Abstract

The dial-a-ride problem (DARP) involves the dispatching of a fleet of vehicles to transport customers requesting service and is one of the most challenging tasks of combinatorial optimization. We study the DARP as a constraint satisfaction problem, where the goal is to find a feasible solution with respect to the time, capacity, and precedence constraints, or to prove infeasibility. The main contribution of our work is a new robust method for this problem formulation. The algorithm is based on a dynamic subroutine that finds for any set of customers a maximum cluster, that is, a maximal set of customers that can be served by a single vehicle. The performance of the algorithm is analyzed and evaluated by means of computational experiments, justifying the efficiency of the solution method.

Suggested Citation

  • Lauri Häme & Harri Hakula, 2015. "A Maximum Cluster Algorithm for Checking the Feasibility of Dial-A-Ride Instances," Transportation Science, INFORMS, vol. 49(2), pages 295-310, May.
  • Handle: RePEc:inm:ortrsc:v:49:y:2015:i:2:p:295-310
    DOI: 10.1287/trsc.2013.0495
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.2013.0495
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2013.0495?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Harilaos N. Psaraftis, 1980. "A Dynamic Programming Solution to the Single Vehicle Many-to-Many Immediate Request Dial-a-Ride Problem," Transportation Science, INFORMS, vol. 14(2), pages 130-154, May.
    2. Dumas, Yvan & Desrosiers, Jacques & Soumis, Francois, 1991. "The pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 54(1), pages 7-22, September.
    3. Gerardo Berbeglia & Gilles Pesant & Louis-Martin Rousseau, 2011. "Checking the Feasibility of Dial-a-Ride Instances Using Constraint Programming," Transportation Science, INFORMS, vol. 45(3), pages 399-412, August.
    4. Cordeau, Jean-François & Laporte, Gilbert, 2003. "A tabu search heuristic for the static multi-vehicle dial-a-ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 37(6), pages 579-594, July.
    5. Jaw, Jang-Jei & Odoni, Amedeo R. & Psaraftis, Harilaos N. & Wilson, Nigel H. M., 1986. "A heuristic algorithm for the multi-vehicle advance request dial-a-ride problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 20(3), pages 243-257, June.
    6. Harilaos N. Psaraftis, 1983. "An Exact Algorithm for the Single Vehicle Many-to-Many Dial-A-Ride Problem with Time Windows," Transportation Science, INFORMS, vol. 17(3), pages 351-357, August.
    7. Paolo Toth & Daniele Vigo, 1997. "Heuristic Algorithms for the Handicapped Persons Transportation Problem," Transportation Science, INFORMS, vol. 31(1), pages 60-71, February.
    8. Jean-François Cordeau, 2006. "A Branch-and-Cut Algorithm for the Dial-a-Ride Problem," Operations Research, INFORMS, vol. 54(3), pages 573-586, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ho, Sin C. & Szeto, W.Y. & Kuo, Yong-Hong & Leung, Janny M.Y. & Petering, Matthew & Tou, Terence W.H., 2018. "A survey of dial-a-ride problems: Literature review and recent developments," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 395-421.
    2. Yunlin Guan & Yun Wang & Xuedong Yan & Haonan Guo & Yi Zhao, 2022. "The One E-Ticket Customized Bus Service Mode for Passengers with Multiple Trips and the Routing Problem," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    3. Lee, Enoch & Cen, Xuekai & Lo, Hong K., 2021. "Zonal-based flexible bus service under elastic stochastic demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    4. Mahmoudi, Monirehalsadat & Chen, Junhua & Shi, Tie & Zhang, Yongxiang & Zhou, Xuesong, 2019. "A cumulative service state representation for the pickup and delivery problem with transfers," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 351-380.
    5. Timo Gschwind & Michael Drexl, 2016. "Adaptive Large Neighborhood Search with a Constant-Time Feasibility Test for the Dial-a-Ride Problem," Working Papers 1624, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Mengyang & Luo, Zhixing & Lim, Andrew, 2015. "A branch-and-cut algorithm for a realistic dial-a-ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 267-288.
    2. Hou, Liwen & Li, Dong & Zhang, Dali, 2018. "Ride-matching and routing optimisation: Models and a large neighbourhood search heuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 143-162.
    3. Häme, Lauri, 2011. "An adaptive insertion algorithm for the single-vehicle dial-a-ride problem with narrow time windows," European Journal of Operational Research, Elsevier, vol. 209(1), pages 11-22, February.
    4. Hua, Shijia & Zeng, Wenjia & Liu, Xinglu & Qi, Mingyao, 2022. "Optimality-guaranteed algorithms on the dynamic shared-taxi problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    5. Yves Molenbruch & Kris Braekers & An Caris, 2017. "Typology and literature review for dial-a-ride problems," Annals of Operations Research, Springer, vol. 259(1), pages 295-325, December.
    6. Xiang, Zhihai & Chu, Chengbin & Chen, Haoxun, 2006. "A fast heuristic for solving a large-scale static dial-a-ride problem under complex constraints," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1117-1139, October.
    7. Mahmoudi, Monirehalsadat & Zhou, Xuesong, 2016. "Finding optimal solutions for vehicle routing problem with pickup and delivery services with time windows: A dynamic programming approach based on state–space–time network representations," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 19-42.
    8. Jean-François Cordeau & Gilbert Laporte, 2007. "The dial-a-ride problem: models and algorithms," Annals of Operations Research, Springer, vol. 153(1), pages 29-46, September.
    9. Ho, Sin C. & Szeto, W.Y. & Kuo, Yong-Hong & Leung, Janny M.Y. & Petering, Matthew & Tou, Terence W.H., 2018. "A survey of dial-a-ride problems: Literature review and recent developments," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 395-421.
    10. Kirchler, Dominik & Wolfler Calvo, Roberto, 2013. "A Granular Tabu Search algorithm for the Dial-a-Ride Problem," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 120-135.
    11. Cortés, Cristián E. & Matamala, Martín & Contardo, Claudio, 2010. "The pickup and delivery problem with transfers: Formulation and a branch-and-cut solution method," European Journal of Operational Research, Elsevier, vol. 200(3), pages 711-724, February.
    12. Paquette, Julie & Cordeau, Jean-François & Laporte, Gilbert & Pascoal, Marta M.B., 2013. "Combining multicriteria analysis and tabu search for dial-a-ride problems," Transportation Research Part B: Methodological, Elsevier, vol. 52(C), pages 1-16.
    13. Jean-François Cordeau, 2006. "A Branch-and-Cut Algorithm for the Dial-a-Ride Problem," Operations Research, INFORMS, vol. 54(3), pages 573-586, June.
    14. Liu, Ran & Xie, Xiaolan & Augusto, Vincent & Rodriguez, Carlos, 2013. "Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care," European Journal of Operational Research, Elsevier, vol. 230(3), pages 475-486.
    15. Luo, Ying & Schonfeld, Paul, 2007. "A rejected-reinsertion heuristic for the static Dial-A-Ride Problem," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 736-755, August.
    16. Mitrovic-Minic, Snezana & Laporte, Gilbert, 2004. "Waiting strategies for the dynamic pickup and delivery problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 38(7), pages 635-655, August.
    17. Zhixing Luo & Mengyang Liu & Andrew Lim, 2019. "A Two-Phase Branch-and-Price-and-Cut for a Dial-a-Ride Problem in Patient Transportation," Service Science, INFORMS, vol. 53(1), pages 113-130, February.
    18. Cordeau, Jean-François & Laporte, Gilbert, 2003. "A tabu search heuristic for the static multi-vehicle dial-a-ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 37(6), pages 579-594, July.
    19. Mahmoudi, Monirehalsadat & Chen, Junhua & Shi, Tie & Zhang, Yongxiang & Zhou, Xuesong, 2019. "A cumulative service state representation for the pickup and delivery problem with transfers," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 351-380.
    20. Christian Pfeiffer & Arne Schulz, 2022. "An ALNS algorithm for the static dial-a-ride problem with ride and waiting time minimization," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 87-119, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:49:y:2015:i:2:p:295-310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.