IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v46y2012i4p501-511.html
   My bibliography  Save this article

Queueing Models for Trajectory-Based Aircraft Operations

Author

Listed:
  • Tasos Nikoleris

    (Department of Civil and Environmental Engineering, Institute of Transportation Studies, University of California, Berkeley, Berkeley, California 94720)

  • Mark Hansen

    (Department of Civil and Environmental Engineering, Institute of Transportation Studies, University of California, Berkeley, Berkeley, California 94720)

Abstract

This paper develops a queueing model for aircraft arrivals at a single server under trajectory-based flight operations, which are expected to prevail in the Next Generation Air Transportation System. Aircraft are assigned scheduled times of arrival at a server, which they meet with some normally distributed stochastic error. The Clark approximation method is employed to estimate expected queueing delays, and it is shown, through comparison with simulation, that the method yields very accurate estimates. Exact results are derived for a special case in which aircraft are metered into a capacity-constrained area with constant excess time separation between them. This allows analysis of the tradeoff between the “stochastic delay” that results from imperfect adherence to metered times of arrival and the additional “deterministic delay” from metering at a headway above the minimum required.

Suggested Citation

  • Tasos Nikoleris & Mark Hansen, 2012. "Queueing Models for Trajectory-Based Aircraft Operations," Transportation Science, INFORMS, vol. 46(4), pages 501-511, November.
  • Handle: RePEc:inm:ortrsc:v:46:y:2012:i:4:p:501-511
    DOI: 10.1287/trsc.1120.0411
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.1120.0411
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.1120.0411?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bernard O. Koopman, 1972. "Air-Terminal Queues under Time-Dependent Conditions," Operations Research, INFORMS, vol. 20(6), pages 1089-1114, December.
    2. Joel L. Horowitz & Jürg M. Sparmann & Carlos F. Daganzo, 1982. "An Investigation of the Accuracy of the Clark Approximation for the Multinomial Probit Model," Transportation Science, INFORMS, vol. 16(3), pages 382-401, August.
    3. Carlos F. Daganzo & Fernando Bouthelier & Yosef Sheffi, 1977. "Multinomial Probit and Qualitative Choice: A Computationally Efficient Algorithm," Transportation Science, INFORMS, vol. 11(4), pages 338-358, November.
    4. Federico Sabria & Carlos F. Daganzo, 1989. "Approximate Expressions for Queueing Systems with Scheduled Arrivals and Established Service Order," Transportation Science, INFORMS, vol. 23(3), pages 159-165, August.
    5. Liu, Pei-chen Barry & Hansen, Mark & Mukherjee, Avijit, 2008. "Scenario-based air traffic flow management: From theory to practice," Transportation Research Part B: Methodological, Elsevier, vol. 42(7-8), pages 685-702, August.
    6. Charles E. Clark, 1961. "The Greatest of a Finite Set of Random Variables," Operations Research, INFORMS, vol. 9(2), pages 145-162, April.
    7. G. Guadagni & S. Ndreca & B. Scoppola, 2011. "Queueing systems with pre-scheduled random arrivals," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 73(1), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlo Lancia & Gianluca Guadagni & Sokol Ndreca & Benedetto Scoppola, 2018. "Asymptotics for the late arrivals problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(3), pages 475-493, December.
    2. Marie-Sklaerder Vié & Nicolas Zufferey & Roel Leus, 2022. "Aircraft landing planning under uncertain conditions," Journal of Scheduling, Springer, vol. 25(2), pages 203-228, April.
    3. Gillen, David & Jacquillat, Alexandre & Odoni, Amedeo R., 2016. "Airport demand management: The operations research and economics perspectives and potential synergies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 495-513.
    4. Alexandre Jacquillat & Amedeo R. Odoni, 2015. "An Integrated Scheduling and Operations Approach to Airport Congestion Mitigation," Operations Research, INFORMS, vol. 63(6), pages 1390-1410, December.
    5. Shone, Rob & Glazebrook, Kevin & Zografos, Konstantinos G., 2019. "Resource allocation in congested queueing systems with time-varying demand: An application to airport operations," European Journal of Operational Research, Elsevier, vol. 276(2), pages 566-581.
    6. Birolini, Sebastian & Jacquillat, Alexandre, 2023. "Day-ahead aircraft routing with data-driven primary delay predictions," European Journal of Operational Research, Elsevier, vol. 310(1), pages 379-396.
    7. Caccavale, Maria Virginia & Iovanella, Antonio & Lancia, Carlo & Lulli, Guglielmo & Scoppola, Benedetto, 2014. "A model of inbound air traffic: The application to Heathrow airport," Journal of Air Transport Management, Elsevier, vol. 34(C), pages 116-122.
    8. Jacquillat, Alexandre & Odoni, Amedeo R., 2015. "Endogenous control of service rates in stochastic and dynamic queuing models of airport congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 133-151.
    9. Jacquillat, Alexandre & Odoni, Amedeo R., 2018. "A roadmap toward airport demand and capacity management," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PA), pages 168-185.
    10. Li, Max Z. & Ryerson, Megan S., 2019. "Reviewing the DATAS of aviation research data: Diversity, availability, tractability, applicability, and sources," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 111-130.
    11. Alexandre Jacquillat & Vikrant Vaze, 2018. "Interairline Equity in Airport Scheduling Interventions," Transportation Science, INFORMS, vol. 52(4), pages 941-964, August.
    12. Kim, Amy Miyoung, 2016. "The impacts of changing flight demands and throughput performance on airport delays through the Great Recession," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 19-34.
    13. Gwiggner, Claus & Nagaoka, Sakae, 2014. "Data and queueing analysis of a Japanese air-traffic flow," European Journal of Operational Research, Elsevier, vol. 235(1), pages 265-275.
    14. Tasos Nikoleris & Mark Hansen, 2016. "Effect of Trajectory Prediction and Stochastic Runway Occupancy Times on Aircraft Delays," Transportation Science, INFORMS, vol. 50(1), pages 110-119, February.
    15. Alexandre Jacquillat & Amedeo R. Odoni & Mort D. Webster, 2017. "Dynamic Control of Runway Configurations and of Arrival and Departure Service Rates at JFK Airport Under Stochastic Queue Conditions," Transportation Science, INFORMS, vol. 51(1), pages 155-176, February.
    16. Kim, Amy & Hansen, Mark, 2013. "Deconstructing delay: A non-parametric approach to analyzing delay changes in single server queuing systems," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 119-133.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tasos Nikoleris & Mark Hansen, 2016. "Effect of Trajectory Prediction and Stochastic Runway Occupancy Times on Aircraft Delays," Transportation Science, INFORMS, vol. 50(1), pages 110-119, February.
    2. Deng, Wen & Lei, Hao & Zhou, Xuesong, 2013. "Traffic state estimation and uncertainty quantification based on heterogeneous data sources: A three detector approach," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 132-157.
    3. Wada, Kentaro & Usui, Kento & Takigawa, Tsubasa & Kuwahara, Masao, 2018. "An optimization modeling of coordinated traffic signal control based on the variational theory and its stochastic extension," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 907-925.
    4. Bolduc, Denis & Kaci, Mustapha, 1993. "Estimation des modèles probit polytomiques : un survol des techniques," L'Actualité Economique, Société Canadienne de Science Economique, vol. 69(3), pages 161-191, septembre.
    5. Hajivassiliou, Vassilis A. & Ruud, Paul A., 1986. "Classical estimation methods for LDV models using simulation," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 40, pages 2383-2441, Elsevier.
    6. Kenneth Train, "undated". "Simulation Methods for Probit and Related Models Based on Convenient Error Partitioning," Working Papers _009, University of California at Berkeley, Econometrics Laboratory Software Archive.
    7. Carlo Lancia & Gianluca Guadagni & Sokol Ndreca & Benedetto Scoppola, 2018. "Asymptotics for the late arrivals problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(3), pages 475-493, December.
    8. C F Daganzo & Y Sheffi, 1982. "Multinomial Probit with Time-Series Data: Unifying State Dependence and Serial Correlation Models," Environment and Planning A, , vol. 14(10), pages 1377-1388, October.
    9. Batram, Manuel & Bauer, Dietmar, 2019. "On consistency of the MACML approach to discrete choice modelling," Journal of choice modelling, Elsevier, vol. 30(C), pages 1-16.
    10. Vijverberg, Wim P. M., 1997. "Monte Carlo evaluation of multivariate normal probabilities," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 281-307.
    11. Maher, M. J. & Hughes, P. C., 1997. "A probit-based stochastic user equilibrium assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 31(4), pages 341-355, August.
    12. Vassilis A. Hajivassiliou, 1991. "Simulation Estimation Methods for Limited Dependent Variable Models," Cowles Foundation Discussion Papers 1007, Cowles Foundation for Research in Economics, Yale University.
    13. Michael R. Taaffe & Gordon M. Clark, 1988. "Approximating nonstationary two‐priority non‐preemptive queueing systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(1), pages 125-145, February.
    14. Yai, Tetsuo & Iwakura, Seiji & Morichi, Shigeru, 1997. "Multinomial probit with structured covariance for route choice behavior," Transportation Research Part B: Methodological, Elsevier, vol. 31(3), pages 195-207, June.
    15. Shone, Rob & Glazebrook, Kevin & Zografos, Konstantinos G., 2019. "Resource allocation in congested queueing systems with time-varying demand: An application to airport operations," European Journal of Operational Research, Elsevier, vol. 276(2), pages 566-581.
    16. David Bergman & Carlos Cardonha & Jason Imbrogno & Leonardo Lozano, 2023. "Optimizing the Expected Maximum of Two Linear Functions Defined on a Multivariate Gaussian Distribution," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 304-317, March.
    17. Kim, Myeonghyeon & Choi, Yuri & Song, Ki Han, 2019. "Identification model development for proactive response on irregular operations (IROPs)," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 1-8.
    18. Lof, Matthijs & van Bommel, Jos, 2023. "Asymmetric information and the distribution of trading volume," Journal of Corporate Finance, Elsevier, vol. 82(C).
    19. Dixit, Aasheesh & Jakhar, Suresh Kumar, 2021. "Airport capacity management: A review and bibliometric analysis," Journal of Air Transport Management, Elsevier, vol. 91(C).
    20. Elmaghraby, Salah E., 2000. "On criticality and sensitivity in activity networks," European Journal of Operational Research, Elsevier, vol. 127(2), pages 220-238, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:46:y:2012:i:4:p:501-511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.