IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v39y2005i4p503-517.html
   My bibliography  Save this article

Solving Real-Life Locomotive-Scheduling Problems

Author

Listed:
  • Ravindra K. Ahuja

    (Department of Industrial and Systems Engineering, University of Florida, Gainesville, Florida 32611)

  • Jian Liu

    (Innovative Scheduling, GTEC, 2153 SE Hawthorne Road, Gainesville, Florida 32641)

  • James B. Orlin

    (Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

  • Dushyant Sharma

    (Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan 48109)

  • Larry A. Shughart

    (Innovative Scheduling, GTEC, 2153 SE Hawthorne Road, Gainesville, Florida 32641)

Abstract

In the locomotive-scheduling problem (or the locomotive-assignment problem), we must assign a consist (a set of locomotives) to each train in a preplanned train schedule so as to provide each train with sufficient locomotive power to pull the train from its origin to its destination. Locomotive-scheduling problems are among the most important problems in railroad scheduling. In this paper, we report the results of a study on the locomotive-scheduling problem as it is faced by CSX Transportation, a major U.S. railroad company. We consider the planning version of the locomotive-scheduling model (LSM) in which multiple types of locomotives exist, and we need to decide which set of locomotives should be assigned to each train. We present an integrated model that determines: the set of active and deadheaded locomotives for each train; the light-traveling locomotives from power sources to power sinks; and train-to-train connections (for which we specify which inbound trains and outbound trains can directly connect). An important feature of our model is that we explicitly consider consist bustings and consistency . A consist is said to be busted when a set of locomotives coming on an inbound train is broken into subsets to be reassigned to two or more outbound trains. A solution is consistent over a week if a train receives the same locomotive assignment each day that it runs. We will provide a mixed-integer programming (MIP) formulation of the locomotive-assignment problem. However, an MIP of this size cannot be solved to optimality or near optimality in acceptable running times using commercially available software. Using problem decomposition, integer programming, and very large-scale neighborhood search, we have developed a solution technique to solve this problem within 30 minutes of computation time on a Pentium III computer. Our solution obtained a potential savings of over 400 locomotives over the solution obtained by the in-house software developed by CSX.

Suggested Citation

  • Ravindra K. Ahuja & Jian Liu & James B. Orlin & Dushyant Sharma & Larry A. Shughart, 2005. "Solving Real-Life Locomotive-Scheduling Problems," Transportation Science, INFORMS, vol. 39(4), pages 503-517, November.
  • Handle: RePEc:inm:ortrsc:v:39:y:2005:i:4:p:503-517
    DOI: 10.1287/trsc.1050.0115
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.1050.0115
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.1050.0115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jean-François Cordeau & Paolo Toth & Daniele Vigo, 1998. "A Survey of Optimization Models for Train Routing and Scheduling," Transportation Science, INFORMS, vol. 32(4), pages 380-404, November.
    2. Koorush Ziarati & François Soumis & Jacques Desrosiers & Marius M. Solomon, 1999. "A Branch-First, Cut-Second Approach for Locomotive Assignment," Management Science, INFORMS, vol. 45(8), pages 1156-1168, August.
    3. Ziarati, Koorush & Soumis, Francois & Desrosiers, Jacques & Gelinas, Sylvie & Saintonge, Andre, 1997. "Locomotive assignment with heterogeneous consists at CN North America," European Journal of Operational Research, Elsevier, vol. 97(2), pages 281-292, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vaidyanathan, Balachandran & Ahuja, Ravindra K. & Liu, Jian & Shughart, Larry A., 2008. "Real-life locomotive planning: New formulations and computational results," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 147-168, February.
    2. Camilo Ortiz-Astorquiza & Jean-François Cordeau & Emma Frejinger, 2021. "The Locomotive Assignment Problem with Distributed Power at the Canadian National Railway Company," Transportation Science, INFORMS, vol. 55(2), pages 510-531, March.
    3. Balachandran Vaidyanathan & Ravindra K. Ahuja & James B. Orlin, 2008. "The Locomotive Routing Problem," Transportation Science, INFORMS, vol. 42(4), pages 492-507, November.
    4. Belgacem Bouzaiene-Ayari & Clark Cheng & Sourav Das & Ricardo Fiorillo & Warren B. Powell, 2016. "From Single Commodity to Multiattribute Models for Locomotive Optimization: A Comparison of Optimal Integer Programming and Approximate Dynamic Programming," Transportation Science, INFORMS, vol. 50(2), pages 366-389, May.
    5. Prashant Premkumar & P. N. Ram Kumar, 2019. "Literature Review of Locomotive Assignment Problem from Service Operations Perspective: The Case of Indian Railways," IIM Kozhikode Society & Management Review, , vol. 8(1), pages 74-86, January.
    6. Xu, Xiaoming & Li, Chung-Lun & Xu, Zhou, 2018. "Integrated train timetabling and locomotive assignment," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 573-593.
    7. Bach, Lukas & Gendreau, Michel & Wøhlk, Sanne, 2015. "Freight railway operator timetabling and engine scheduling," European Journal of Operational Research, Elsevier, vol. 241(2), pages 309-319.
    8. Prashant Premkumar & P. N. Ram Kumar, 2022. "Locomotive assignment problem: integrating the strategic, tactical and operational level aspects," Annals of Operations Research, Springer, vol. 315(2), pages 867-898, August.
    9. Scheffler, Martin & Neufeld, Janis S. & Hölscher, Michael, 2020. "An MIP-based heuristic solution approach for the locomotive assignment problem focussing on (dis-)connecting processes," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 64-80.
    10. Piu, F. & Prem Kumar, V. & Bierlaire, M. & Speranza, M.G., 2015. "Introducing a preliminary consists selection in the locomotive assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 217-237.
    11. Jean-François Cordeau & François Soumis & Jacques Desrosiers, 2000. "A Benders Decomposition Approach for the Locomotive and Car Assignment Problem," Transportation Science, INFORMS, vol. 34(2), pages 133-149, May.
    12. Philimon Nyamugure & Siphosenkosi Dube Swene & Edward T. Chiyaka & Farikayi K. Mutasa, 2014. "Train Schedule Optimization: A Case Study of the National Railways of Zimbabwe," International Journal of Management Sciences, Research Academy of Social Sciences, vol. 3(1), pages 1-20.
    13. Danial Davarnia & Jean-Philippe P. Richard & Ece Içyüz-Ay & Bijan Taslimi, 2019. "Network Models with Unsplittable Node Flows with Application to Unit Train Scheduling," Operations Research, INFORMS, vol. 67(4), pages 1053-1068, July.
    14. Armin Fügenschuh & Henning Homfeld & Andreas Huck & Alexander Martin & Zhi Yuan, 2008. "Scheduling Locomotives and Car Transfers in Freight Transport," Transportation Science, INFORMS, vol. 42(4), pages 478-491, November.
    15. Rouillon, Stéphane & Desaulniers, Guy & Soumis, François, 2006. "An extended branch-and-bound method for locomotive assignment," Transportation Research Part B: Methodological, Elsevier, vol. 40(5), pages 404-423, June.
    16. Koorush Ziarati & François Soumis & Jacques Desrosiers & Marius M. Solomon, 1999. "A Branch-First, Cut-Second Approach for Locomotive Assignment," Management Science, INFORMS, vol. 45(8), pages 1156-1168, August.
    17. Warren B. Powell & Belgacem Bouzaiene-Ayari & Coleman Lawrence & Clark Cheng & Sourav Das & Ricardo Fiorillo, 2014. "Locomotive Planning at Norfolk Southern: An Optimizing Simulator Using Approximate Dynamic Programming," Interfaces, INFORMS, vol. 44(6), pages 567-578, December.
    18. Chung, Ji-Won & Oh, Seog-Moon & Choi, In-Chan, 2009. "A hybrid genetic algorithm for train sequencing in the Korean railway," Omega, Elsevier, vol. 37(3), pages 555-565, June.
    19. Albrecht, Amie & Howlett, Phil & Pudney, Peter & Vu, Xuan & Zhou, Peng, 2016. "The key principles of optimal train control—Part 1: Formulation of the model, strategies of optimal type, evolutionary lines, location of optimal switching points," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 482-508.
    20. Jin, Jian Gang & Zhao, Jun & Lee, Der-Horng, 2013. "A column generation based approach for the Train Network Design Optimization problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 1-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:39:y:2005:i:4:p:503-517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.