IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v68y2020i2p453-466.html
   My bibliography  Save this article

Pricing and Assortment Strategies with Product Exchanges

Author

Listed:
  • Laura Wagner

    (Católica Lisbon School of Business and Economics, Catholic University of Portugal, 1649-023 Lisbon, Portugal)

  • Victor Martínez-de-Albéniz

    (Production, Technology and Operations Management Department, IESE Business School, University of Navarra, 08034 Barcelona, Spain)

Abstract

Lenient return policies enable consumers to return or exchange products they are unsatisfied with, which boosts sales. Unfortunately, they also increase retailer costs. We develop a search framework where consumers sequentially learn about products’ true value and evaluate whether to keep, exchange, or return them. Our formulation results in a tractable attraction demand model that can be used for optimization. We show that when pricing is not a decision, the assortment problem does not have a simple structure, but we provide an approximation algorithm to solve it. When prices and assortment can be controlled, the optimization becomes tractable: product prices can either be set so that potential return costs are added to the product price, be reduced to ensure that consumers choose to evaluate them after an exchange, or be set so high so that the items are effectively excluded from the assortment. We find that when prices and assortment can be jointly optimized, assortment size always increases when consumers pay a higher share of the return cost. Finally, retailers prefer to pass all return costs on to the consumers, which not only improves social welfare but also can raise consumer surplus.

Suggested Citation

  • Laura Wagner & Victor Martínez-de-Albéniz, 2020. "Pricing and Assortment Strategies with Product Exchanges," Operations Research, INFORMS, vol. 68(2), pages 453-466, March.
  • Handle: RePEc:inm:oropre:v:68:y:2020:i:2:p:453-466
    DOI: 10.1287/opre.2019.1871
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/opre.2019.1871
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2019.1871?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jeffrey D. Shulman & Anne T. Coughlan & R. Canan Savaskan, 2010. "Optimal Reverse Channel Structure for Consumer Product Returns," Marketing Science, INFORMS, vol. 29(6), pages 1071-1085, 11-12.
    2. Weitzman, Martin L, 1979. "Optimal Search for the Best Alternative," Econometrica, Econometric Society, vol. 47(3), pages 641-654, May.
    3. Che, Yeon-Koo, 1996. "Customer Return Policies for Experience Goods," Journal of Industrial Economics, Wiley Blackwell, vol. 44(1), pages 17-24, March.
    4. Davis, Scott & Hagerty, Michael & Gerstner, Eitan, 1998. "Return policies and the optimal level of "hassle"," Journal of Economics and Business, Elsevier, vol. 50(5), pages 445-460, September.
    5. Hongmin Li & Woonghee Tim Huh, 2011. "Pricing Multiple Products with the Multinomial Logit and Nested Logit Models: Concavity and Implications," Manufacturing & Service Operations Management, INFORMS, vol. 13(4), pages 549-563, October.
    6. Xuanming Su, 2009. "Consumer Returns Policies and Supply Chain Performance," Manufacturing & Service Operations Management, INFORMS, vol. 11(4), pages 595-612, March.
    7. Kalyan Talluri & Garrett van Ryzin, 2004. "Revenue Management Under a General Discrete Choice Model of Consumer Behavior," Management Science, INFORMS, vol. 50(1), pages 15-33, January.
    8. Jeffrey D. Shulman & Anne T. Coughlan & R. Canan Savaskan, 2009. "Optimal Restocking Fees and Information Provision in an Integrated Demand-Supply Model of Product Returns," Manufacturing & Service Operations Management, INFORMS, vol. 11(4), pages 577-594, December.
    9. Guillermo Gallego & Ruxian Wang, 2014. "Multiproduct Price Optimization and Competition Under the Nested Logit Model with Product-Differentiated Price Sensitivities," Operations Research, INFORMS, vol. 62(2), pages 450-461, April.
    10. Paat Rusmevichientong & Zuo-Jun Max Shen & David B. Shmoys, 2010. "Dynamic Assortment Optimization with a Multinomial Logit Choice Model and Capacity Constraint," Operations Research, INFORMS, vol. 58(6), pages 1666-1680, December.
    11. Lin Liu & Anthony Dukes, 2013. "Consideration Set Formation with Multiproduct Firms: The Case of Within-Firm and Across-Firm Evaluation Costs," Management Science, INFORMS, vol. 59(8), pages 1871-1886, August.
    12. Ruxian Wang & Ozge Sahin, 2018. "The Impact of Consumer Search Cost on Assortment Planning and Pricing," Management Science, INFORMS, vol. 64(8), pages 3649-3666, August.
    13. Prabuddha De & Yu (Jeffrey) Hu & Mohammad S. Rahman, 2013. "Product-Oriented Web Technologies and Product Returns: An Exploratory Study," Information Systems Research, INFORMS, vol. 24(4), pages 998-1010, December.
    14. H. Sebastian Heese & Victor Martínez-de-Albéniz, 2018. "Effects of Assortment Breadth Announcements on Manufacturer Competition," Manufacturing & Service Operations Management, INFORMS, vol. 20(2), pages 302-316, May.
    15. Ernest Adams & Samuel Messick, 1958. "An axiomatic formulation and generalization of successive intervals scaling," Psychometrika, Springer;The Psychometric Society, vol. 23(4), pages 355-368, December.
    16. Aydın Alptekinoğlu & John H. Semple, 2016. "The Exponomial Choice Model: A New Alternative for Assortment and Price Optimization," Operations Research, INFORMS, vol. 64(1), pages 79-93, February.
    17. Nimrod Megiddo, 1979. "Combinatorial Optimization with Rational Objective Functions," Mathematics of Operations Research, INFORMS, vol. 4(4), pages 414-424, November.
    18. Eric T. Anderson & Karsten Hansen & Duncan Simester, 2009. "The Option Value of Returns: Theory and Empirical Evidence," Marketing Science, INFORMS, vol. 28(3), pages 405-423, 05-06.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiangyu Gao & Stefanus Jasin & Sajjad Najafi & Huanan Zhang, 2022. "Joint Learning and Optimization for Multi-Product Pricing (and Ranking) Under a General Cascade Click Model," Management Science, INFORMS, vol. 68(10), pages 7362-7382, October.
    2. Duong, Quang Huy & Zhou, Li & Meng, Meng & Nguyen, Truong Van & Ieromonachou, Petros & Nguyen, Duy Tiep, 2022. "Understanding product returns: A systematic literature review using machine learning and bibliometric analysis," International Journal of Production Economics, Elsevier, vol. 243(C).
    3. Park, YoungSoo & Sim, Jeongeun & Kim, Bosung, 2022. "Online retail operations with “Try-Before-You-Buy”," European Journal of Operational Research, Elsevier, vol. 299(3), pages 987-1002.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qingwei Jin & Mengyan Zhu & Yi Yang & Lin Liu, 2022. "Consumer search with anticipated regret," Production and Operations Management, Production and Operations Management Society, vol. 31(8), pages 3337-3351, August.
    2. Duong, Quang Huy & Zhou, Li & Meng, Meng & Nguyen, Truong Van & Ieromonachou, Petros & Nguyen, Duy Tiep, 2022. "Understanding product returns: A systematic literature review using machine learning and bibliometric analysis," International Journal of Production Economics, Elsevier, vol. 243(C).
    3. Necati Ertekin & Anupam Agrawal, 2021. "How Does a Return Period Policy Change Affect Multichannel Retailer Profitability?," Manufacturing & Service Operations Management, INFORMS, vol. 23(1), pages 210-229, 1-2.
    4. Ratchford, Brian & Soysal, Gonca & Zentner, Alejandro & Gauri, Dinesh K., 2022. "Online and offline retailing: What we know and directions for future research," Journal of Retailing, Elsevier, vol. 98(1), pages 152-177.
    5. Ruxian Wang & Zizhuo Wang, 2017. "Consumer Choice Models with Endogenous Network Effects," Management Science, INFORMS, vol. 63(11), pages 3944-3960, November.
    6. Çerağ Pinçe & Mark Ferguson & Beril Toktay, 2016. "Extracting Maximum Value from Consumer Returns: Allocating Between Remarketing and Refurbishing for Warranty Claims," Manufacturing & Service Operations Management, INFORMS, vol. 18(4), pages 475-492, October.
    7. Rui Chen & Hai Jiang, 2020. "Capacitated assortment and price optimization under the nested logit model," Journal of Global Optimization, Springer, vol. 77(4), pages 895-918, August.
    8. Necati Ertekin & Jeffrey D. Shulman & Haipeng (Allan) Chen, 2019. "On the Profitability of Stacked Discounts: Identifying Revenue and Cost Effects of Discount Framing," Marketing Science, INFORMS, vol. 38(2), pages 317-342, March.
    9. H. Sebastian Heese & Victor Martínez-de-Albéniz, 2018. "Effects of Assortment Breadth Announcements on Manufacturer Competition," Manufacturing & Service Operations Management, INFORMS, vol. 20(2), pages 302-316, May.
    10. Ruxian Wang, 2018. "When Prospect Theory Meets Consumer Choice Models: Assortment and Pricing Management with Reference Prices," Manufacturing & Service Operations Management, INFORMS, vol. 20(3), pages 583-600, July.
    11. Ruxian Wang & Ozge Sahin, 2018. "The Impact of Consumer Search Cost on Assortment Planning and Pricing," Management Science, INFORMS, vol. 64(8), pages 3649-3666, August.
    12. Santiago Gallino & Antonio Moreno, 2018. "The Value of Fit Information in Online Retail: Evidence from a Randomized Field Experiment," Manufacturing & Service Operations Management, INFORMS, vol. 20(4), pages 767-787, October.
    13. Strauss, Arne K. & Klein, Robert & Steinhardt, Claudius, 2018. "A review of choice-based revenue management: Theory and methods," European Journal of Operational Research, Elsevier, vol. 271(2), pages 375-387.
    14. Li, Tingting & Xie, Jinxing & Liu, Xin, 2020. "Consumer return policies in presence of a P2P market," Omega, Elsevier, vol. 97(C).
    15. Wu, Meng & Teunter, Ruud H. & Zhu, Stuart X., 2019. "Online marketing: When to offer a refund for advanced sales," International Journal of Research in Marketing, Elsevier, vol. 36(3), pages 471-491.
    16. Xi Chen & Zachary Owen & Clark Pixton & David Simchi-Levi, 2022. "A Statistical Learning Approach to Personalization in Revenue Management," Management Science, INFORMS, vol. 68(3), pages 1923-1937, March.
    17. Flores, Alvaro & Berbeglia, Gerardo & Van Hentenryck, Pascal, 2019. "Assortment optimization under the Sequential Multinomial Logit Model," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1052-1064.
    18. Zhenzhen Yan & Karthik Natarajan & Chung Piaw Teo & Cong Cheng, 2022. "A Representative Consumer Model in Data-Driven Multiproduct Pricing Optimization," Management Science, INFORMS, vol. 68(8), pages 5798-5827, August.
    19. Aydın Alptekinoğlu & John H. Semple, 2016. "The Exponomial Choice Model: A New Alternative for Assortment and Price Optimization," Operations Research, INFORMS, vol. 64(1), pages 79-93, February.
    20. Wenyan Zhou & Oliver Hinz, 2016. "Determining profit-optimizing return policies – a two-step approach on data from taobao.com," Electronic Markets, Springer;IIM University of St. Gallen, vol. 26(2), pages 103-114, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:68:y:2020:i:2:p:453-466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.