IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v67y2019i6p1752-1765.html
   My bibliography  Save this article

Technical Note—Nonstationary Stochastic Optimization Under L p,q -Variation Measures

Author

Listed:
  • Xi Chen

    (Department of Technology, Operations, and Statistics, Stern School of Business, New York University, New York, New York 10012)

  • Yining Wang

    (Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213)

  • Yu-Xiang Wang

    (Computer Science Department, College of Engineering, University of California, Santa Barbara, Santa Barbara, California 93106)

Abstract

We consider a nonstationary sequential stochastic optimization problem in which the underlying cost functions change over time under a variation budget constraint. We propose an L p,q -variation functional to quantify the change, which yields less variation for dynamic function sequences whose changes are constrained to short time periods or small subsets of input domain. Under the L p,q -variation constraint, we derive both upper and matching lower regret bounds for smooth and strongly convex function sequences, which generalize previously published results [ Besbes O, Gur Y, Zeevi A (2015) Non-stationary stochastic optimization. Oper. Res . 63(5):1227–1244]. Furthermore, we provide an upper bound for general convex function sequences with noisy gradient feedback, which matches the optimal rate as p → ∞. Our results reveal some interesting phenomena under this general variation functional, such as the curse of dimensionality of the function domain. The key technical novelties in our analysis include affinity lemmas that characterize the distance of the minimizers of two convex functions with bounded L p difference and a cubic spline–based construction that attains matching lower bounds.

Suggested Citation

  • Xi Chen & Yining Wang & Yu-Xiang Wang, 2019. "Technical Note—Nonstationary Stochastic Optimization Under L p,q -Variation Measures," Operations Research, INFORMS, vol. 67(6), pages 1752-1765, November.
  • Handle: RePEc:inm:oropre:v:67:y:2019:i:6:p:1752-1765
    DOI: 10.1287/opre.2019.1843
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/opre.2019.1843
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2019.1843?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Omar Besbes & Yonatan Gur & Assaf Zeevi, 2015. "Non-Stationary Stochastic Optimization," Operations Research, INFORMS, vol. 63(5), pages 1227-1244, October.
    2. Arnoud V. den Boer & Bert Zwart, 2015. "Dynamic Pricing and Learning with Finite Inventories," Operations Research, INFORMS, vol. 63(4), pages 965-978, August.
    3. N. Bora Keskin & Assaf Zeevi, 2017. "Chasing Demand: Learning and Earning in a Changing Environment," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 277-307, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Baichun & Yang, Wei, 2021. "A Bayesian learning model for estimating unknown demand parameter in revenue management," European Journal of Operational Research, Elsevier, vol. 293(1), pages 248-262.
    2. Thomas Loots & Arnoud V. den Boer, 2023. "Data‐driven collusion and competition in a pricing duopoly with multinomial logit demand," Production and Operations Management, Production and Operations Management Society, vol. 32(4), pages 1169-1186, April.
    3. Bing Wang & Wenjie Bi & Haiying Liu, 2023. "Dynamic Pricing with Parametric Demand Learning and Reference-Price Effects," Mathematics, MDPI, vol. 11(10), pages 1-14, May.
    4. Liang, Jinpeng & Wu, Jianjun & Gao, Ziyou & Sun, Huijun & Yang, Xin & Lo, Hong K., 2019. "Bus transit network design with uncertainties on the basis of a metro network: A two-step model framework," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 115-138.
    5. Jason Rhuggenaath & Alp Akcay & Yingqian Zhang & Uzay Kaymak, 2022. "Setting Reserve Prices in Second-Price Auctions with Unobserved Bids," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 2950-2967, November.
    6. Xuejun Zhao & Ruihao Zhu & William B. Haskell, 2022. "Learning to Price Supply Chain Contracts against a Learning Retailer," Papers 2211.04586, arXiv.org.
    7. Boxiao Chen & Xiuli Chao & Cong Shi, 2021. "Nonparametric Learning Algorithms for Joint Pricing and Inventory Control with Lost Sales and Censored Demand," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 726-756, May.
    8. Athanassios N. Avramidis & Arnoud V. Boer, 2021. "Dynamic pricing with finite price sets: a non-parametric approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(1), pages 1-34, August.
    9. He, Qiao-Chu & Chen, Ying-Ju, 2018. "Dynamic pricing of electronic products with consumer reviews," Omega, Elsevier, vol. 80(C), pages 123-134.
    10. Boxiao Chen, 2021. "Data‐Driven Inventory Control with Shifting Demand," Production and Operations Management, Production and Operations Management Society, vol. 30(5), pages 1365-1385, May.
    11. Huashuai Qu & Ilya O. Ryzhov & Michael C. Fu & Eric Bergerson & Megan Kurka & Ludek Kopacek, 2020. "Learning Demand Curves in B2B Pricing: A New Framework and Case Study," Production and Operations Management, Production and Operations Management Society, vol. 29(5), pages 1287-1306, May.
    12. Lin An & Andrew A. Li & Benjamin Moseley & R. Ravi, 2023. "The Nonstationary Newsvendor with (and without) Predictions," Papers 2305.07993, arXiv.org, revised Jul 2024.
    13. Liam Madden & Stephen Becker & Emiliano Dall’Anese, 2021. "Bounds for the Tracking Error of First-Order Online Optimization Methods," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 437-457, May.
    14. Santiago R. Balseiro & Yonatan Gur, 2019. "Learning in Repeated Auctions with Budgets: Regret Minimization and Equilibrium," Management Science, INFORMS, vol. 65(9), pages 3952-3968, September.
    15. den Boer, Arnoud V., 2015. "Tracking the market: Dynamic pricing and learning in a changing environment," European Journal of Operational Research, Elsevier, vol. 247(3), pages 914-927.
    16. Ruben Geer & Arnoud V. Boer & Christopher Bayliss & Christine S. M. Currie & Andria Ellina & Malte Esders & Alwin Haensel & Xiao Lei & Kyle D. S. Maclean & Antonio Martinez-Sykora & Asbjørn Nilsen Ris, 2019. "Dynamic pricing and learning with competition: insights from the dynamic pricing challenge at the 2017 INFORMS RM & pricing conference," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 18(3), pages 185-203, June.
    17. N. Bora Keskin & Assaf Zeevi, 2017. "Chasing Demand: Learning and Earning in a Changing Environment," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 277-307, May.
    18. Gönsch, Jochen, 2017. "A survey on risk-averse and robust revenue management," European Journal of Operational Research, Elsevier, vol. 263(2), pages 337-348.
    19. N. Bora Keskin & Yuexing Li & Jing-Sheng Song, 2022. "Data-Driven Dynamic Pricing and Ordering with Perishable Inventory in a Changing Environment," Management Science, INFORMS, vol. 68(3), pages 1938-1958, March.
    20. Yiwei Chen & Cong Shi, 2023. "Network revenue management with online inverse batch gradient descent method," Production and Operations Management, Production and Operations Management Society, vol. 32(7), pages 2123-2137, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:67:y:2019:i:6:p:1752-1765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.