IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v63y2015i5p1227-1244.html
   My bibliography  Save this article

Non-Stationary Stochastic Optimization

Author

Listed:
  • Omar Besbes

    (Columbia University, New York, New York 10027)

  • Yonatan Gur

    (Stanford University, Stanford, California 94305)

  • Assaf Zeevi

    (Columbia University, New York, New York 10027)

Abstract

We consider a non-stationary variant of a sequential stochastic optimization problem, in which the underlying cost functions may change along the horizon. We propose a measure, termed variation budget , that controls the extent of said change, and study how restrictions on this budget impact achievable performance. We identify sharp conditions under which it is possible to achieve long-run average optimality and more refined performance measures such as rate optimality that fully characterize the complexity of such problems. In doing so, we also establish a strong connection between two rather disparate strands of literature: (1) adversarial online convex optimization and (2) the more traditional stochastic approximation paradigm (couched in a non-stationary setting). This connection is the key to deriving well-performing policies in the latter, by leveraging structure of optimal policies in the former. Finally, tight bounds on the minimax regret allow us to quantify the “price of non-stationarity,” which mathematically captures the added complexity embedded in a temporally changing environment versus a stationary one.

Suggested Citation

  • Omar Besbes & Yonatan Gur & Assaf Zeevi, 2015. "Non-Stationary Stochastic Optimization," Operations Research, INFORMS, vol. 63(5), pages 1227-1244, October.
  • Handle: RePEc:inm:oropre:v:63:y:2015:i:5:p:1227-1244
    DOI: 10.1287/opre.2015.1408
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2015.1408
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2015.1408?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Godfrey Keller & Sven Rady, 1999. "Optimal Experimentation in a Changing Environment," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 66(3), pages 475-507.
    2. Omar Besbes & Alp Muharremoglu, 2013. "On Implications of Demand Censoring in the Newsvendor Problem," Management Science, INFORMS, vol. 59(6), pages 1407-1424, June.
    3. Arnoud V. den Boer & Bert Zwart, 2014. "Simultaneously Learning and Optimizing Using Controlled Variance Pricing," Management Science, INFORMS, vol. 60(3), pages 770-783, March.
    4. Woonghee Tim Huh & Paat Rusmevichientong, 2009. "A Nonparametric Asymptotic Analysis of Inventory Planning with Censored Demand," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 103-123, February.
    5. Omar Besbes & Assaf Zeevi, 2011. "On the Minimax Complexity of Pricing in a Changing Environment," Operations Research, INFORMS, vol. 59(1), pages 66-79, February.
    6. Josef Broder & Paat Rusmevichientong, 2012. "Dynamic Pricing Under a General Parametric Choice Model," Operations Research, INFORMS, vol. 60(4), pages 965-980, August.
    7. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Jinpeng & Wu, Jianjun & Gao, Ziyou & Sun, Huijun & Yang, Xin & Lo, Hong K., 2019. "Bus transit network design with uncertainties on the basis of a metro network: A two-step model framework," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 115-138.
    2. Santiago R. Balseiro & Yonatan Gur, 2019. "Learning in Repeated Auctions with Budgets: Regret Minimization and Equilibrium," Management Science, INFORMS, vol. 65(9), pages 3952-3968, September.
    3. Liam Madden & Stephen Becker & Emiliano Dall’Anese, 2021. "Bounds for the Tracking Error of First-Order Online Optimization Methods," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 437-457, May.
    4. N. Bora Keskin & Assaf Zeevi, 2017. "Chasing Demand: Learning and Earning in a Changing Environment," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 277-307, May.
    5. Boxiao Chen, 2021. "Data‐Driven Inventory Control with Shifting Demand," Production and Operations Management, Production and Operations Management Society, vol. 30(5), pages 1365-1385, May.
    6. Yang, Xiangyu & Zhang, Jianghua & Hu, Jian-Qiang & Hu, Jiaqiao, 2024. "Nonparametric multi-product dynamic pricing with demand learning via simultaneous price perturbation," European Journal of Operational Research, Elsevier, vol. 319(1), pages 191-205.
    7. Xi Chen & Yining Wang & Yu-Xiang Wang, 2019. "Technical Note—Nonstationary Stochastic Optimization Under L p,q -Variation Measures," Operations Research, INFORMS, vol. 67(6), pages 1752-1765, November.
    8. Ludovico Crippa & Yonatan Gur & Bar Light, 2022. "Equilibria in Repeated Games under No-Regret with Dynamic Benchmarks," Papers 2212.03152, arXiv.org, revised Jul 2023.
    9. Kuang Xu & Se-Young Yun, 2020. "Reinforcement with Fading Memories," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1258-1288, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. den Boer, Arnoud V., 2015. "Tracking the market: Dynamic pricing and learning in a changing environment," European Journal of Operational Research, Elsevier, vol. 247(3), pages 914-927.
    2. Omar Besbes & Denis Sauré, 2014. "Dynamic Pricing Strategies in the Presence of Demand Shifts," Manufacturing & Service Operations Management, INFORMS, vol. 16(4), pages 513-528, October.
    3. Boxiao Chen & Xiuli Chao & Cong Shi, 2021. "Nonparametric Learning Algorithms for Joint Pricing and Inventory Control with Lost Sales and Censored Demand," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 726-756, May.
    4. Boxiao Chen, 2021. "Data‐Driven Inventory Control with Shifting Demand," Production and Operations Management, Production and Operations Management Society, vol. 30(5), pages 1365-1385, May.
    5. Gur, Yonatan & Macnamara, Gregory & Saban, Daniela, 2020. "On the Disclosure of Promotion Value in Platforms with Learning Sellers," Research Papers 3865, Stanford University, Graduate School of Business.
    6. N. Bora Keskin & Assaf Zeevi, 2017. "Chasing Demand: Learning and Earning in a Changing Environment," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 277-307, May.
    7. Arnoud V. den Boer & Bert Zwart, 2014. "Simultaneously Learning and Optimizing Using Controlled Variance Pricing," Management Science, INFORMS, vol. 60(3), pages 770-783, March.
    8. Arnoud V. den Boer & N. Bora Keskin, 2020. "Discontinuous Demand Functions: Estimation and Pricing," Management Science, INFORMS, vol. 66(10), pages 4516-4534, October.
    9. Boxiao Chen & David Simchi-Levi & Yining Wang & Yuan Zhou, 2022. "Dynamic Pricing and Inventory Control with Fixed Ordering Cost and Incomplete Demand Information," Management Science, INFORMS, vol. 68(8), pages 5684-5703, August.
    10. Yang, Xiangyu & Zhang, Jianghua & Hu, Jian-Qiang & Hu, Jiaqiao, 2024. "Nonparametric multi-product dynamic pricing with demand learning via simultaneous price perturbation," European Journal of Operational Research, Elsevier, vol. 319(1), pages 191-205.
    11. Arnoud V. den Boer & Bert Zwart, 2015. "Dynamic Pricing and Learning with Finite Inventories," Operations Research, INFORMS, vol. 63(4), pages 965-978, August.
    12. Giovanni Gatti Pinheiro & Thomas Fiig & Michael D. Wittman & Michael Defoin-Platel & Riccardo D. Jadanza, 2022. "Demand change detection in airline revenue management," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 21(6), pages 581-595, December.
    13. Yonatan Gur & Gregory Macnamara & Ilan Morgenstern & Daniela Saban, 2019. "Information Disclosure and Promotion Policy Design for Platforms," Papers 1911.09256, arXiv.org, revised Dec 2022.
    14. William L. Cooper & Tito Homem-de-Mello & Anton J. Kleywegt, 2015. "Learning and Pricing with Models That Do Not Explicitly Incorporate Competition," Operations Research, INFORMS, vol. 63(1), pages 86-103, February.
    15. Xiao, Baichun & Yang, Wei, 2021. "A Bayesian learning model for estimating unknown demand parameter in revenue management," European Journal of Operational Research, Elsevier, vol. 293(1), pages 248-262.
    16. N. Bora Keskin & Assaf Zeevi, 2014. "Dynamic Pricing with an Unknown Demand Model: Asymptotically Optimal Semi-Myopic Policies," Operations Research, INFORMS, vol. 62(5), pages 1142-1167, October.
    17. Thomas Loots & Arnoud V. den Boer, 2023. "Data‐driven collusion and competition in a pricing duopoly with multinomial logit demand," Production and Operations Management, Production and Operations Management Society, vol. 32(4), pages 1169-1186, April.
    18. Xuejun Zhao & Ruihao Zhu & William B. Haskell, 2022. "Learning to Price Supply Chain Contracts against a Learning Retailer," Papers 2211.04586, arXiv.org.
    19. Cong Shi & Weidong Chen & Izak Duenyas, 2016. "Technical Note—Nonparametric Data-Driven Algorithms for Multiproduct Inventory Systems with Censored Demand," Operations Research, INFORMS, vol. 64(2), pages 362-370, April.
    20. Retsef Levi & Georgia Perakis & Joline Uichanco, 2015. "The Data-Driven Newsvendor Problem: New Bounds and Insights," Operations Research, INFORMS, vol. 63(6), pages 1294-1306, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:63:y:2015:i:5:p:1227-1244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.