IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v67y2019i6p1564-1585.html
   My bibliography  Save this article

A Data-Driven Functionally Robust Approach for Simultaneous Pricing and Order Quantity Decisions with Unknown Demand Function

Author

Listed:
  • Jian Hu

    (Department of Industrial and Manufacturing Systems Engineering, University of Michigan–Dearborn, Dearborn, Michigan 48128)

  • Junxuan Li

    (School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332)

  • Sanjay Mehrotra

    (Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, Illinois 60208)

Abstract

We consider a retailer’s problem of optimally pricing a product and making order quantity decisions without knowing the function specifying price–demand relationship. We assume that the price is set only once after collecting data, possibly from history or a market study, and that the price–demand relationship is a decreasing convex or concave function. Different from the classic approach that fits a function to the price–demand data, we propose and study a maximin framework introducing a novel concept of function robustness. This function robustness concept also provides an alternative mechanism for performing sensitivity analysis for decisions in the presence of data fitting errors. The overall profit maximization model is a nonconvex optimization problem in a function space. A two-sided cutting surface algorithm is developed to solve the maximin model. An analytical approach to compute the rate of decrease of optimal profit is also given for the purposes of sensitivity analysis. Experiments show that the proposed function robust model provides a framework for risk–reward tradeoff in decision making. A Porterhouse beef price and demand data set is used to study the performance of the proposed algorithm and to illustrate the properties of the solution of the joint pricing and order quantity decision problem.

Suggested Citation

  • Jian Hu & Junxuan Li & Sanjay Mehrotra, 2019. "A Data-Driven Functionally Robust Approach for Simultaneous Pricing and Order Quantity Decisions with Unknown Demand Function," Operations Research, INFORMS, vol. 67(6), pages 1564-1585, November.
  • Handle: RePEc:inm:oropre:v:67:y:2019:i:6:p:1564-1585
    DOI: 10.1287/opre.2019.1849
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/opre.2019.1849
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2019.1849?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nicholas C. Petruzzi & Maqbool Dada, 1999. "Pricing and the Newsvendor Problem: A Review with Extensions," Operations Research, INFORMS, vol. 47(2), pages 183-194, April.
    2. Naveed Chehrazi & Thomas A. Weber, 2010. "Monotone Approximation of Decision Problems," Operations Research, INFORMS, vol. 58(4-part-2), pages 1158-1177, August.
    3. Edwin S. Mills, 1959. "Uncertainty and Price Theory," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 73(1), pages 116-130.
    4. Sanjay Mehrotra & David Papp, 2013. "A cutting surface algorithm for semi-infinite convex programming with an application to moment robust optimization," Papers 1306.3437, arXiv.org, revised Aug 2014.
    5. Jian Hu & Sanjay Mehrotra, 2015. "Robust decision making over a set of random targets or risk-averse utilities with an application to portfolio optimization," IISE Transactions, Taylor & Francis Journals, vol. 47(4), pages 358-372, April.
    6. Yingjie Lan & Huina Gao & Michael O. Ball & Itir Karaesmen, 2008. "Revenue Management with Limited Demand Information," Management Science, INFORMS, vol. 54(9), pages 1594-1609, September.
    7. Hu, Jian & Bansal, Manish & Mehrotra, Sanjay, 2018. "Robust decision making using a general utility set," European Journal of Operational Research, Elsevier, vol. 269(2), pages 699-714.
    8. Xin Chen & David Simchi-Levi, 2004. "Coordinating Inventory Control and Pricing Strategies with Random Demand and Fixed Ordering Cost: The Infinite Horizon Case," Mathematics of Operations Research, INFORMS, vol. 29(3), pages 698-723, August.
    9. Arnoud V. den Boer & Bert Zwart, 2014. "Simultaneously Learning and Optimizing Using Controlled Variance Pricing," Management Science, INFORMS, vol. 60(3), pages 770-783, March.
    10. Greenhut,Melvin L. & Norman,George & Hung,Chao-Shun, 1987. "The Economics of Imperfect Competition," Cambridge Books, Cambridge University Press, number 9780521315647, January.
    11. T. M. Whitin, 1955. "Inventory Control and Price Theory," Management Science, INFORMS, vol. 2(1), pages 61-68, October.
    12. Zizhuo Wang & Shiming Deng & Yinyu Ye, 2014. "Close the Gaps: A Learning-While-Doing Algorithm for Single-Product Revenue Management Problems," Operations Research, INFORMS, vol. 62(2), pages 318-331, April.
    13. Georgia Perakis & Guillaume Roels, 2008. "Regret in the Newsvendor Model with Partial Information," Operations Research, INFORMS, vol. 56(1), pages 188-203, February.
    14. Wang Chi Cheung & David Simchi-Levi & He Wang, 2017. "Technical Note—Dynamic Pricing and Demand Learning with Limited Price Experimentation," Operations Research, INFORMS, vol. 65(6), pages 1722-1731, December.
    15. Ayşe Kocabıyıkoğlu & Ioana Popescu, 2011. "An Elasticity Approach to the Newsvendor with Price-Sensitive Demand," Operations Research, INFORMS, vol. 59(2), pages 301-312, April.
    16. Maxime C. Cohen & Georgia Perakis & Robert S. Pindyck, 2015. "Pricing with Limited Knowledge of Demand," NBER Working Papers 21679, National Bureau of Economic Research, Inc.
    17. Paul Klemperer & Margaret Meyer, 1986. "Price Competition vs. Quantity Competition: The Role of Uncertainty," RAND Journal of Economics, The RAND Corporation, vol. 17(4), pages 618-638, Winter.
    18. Omar Besbes & Assaf Zeevi, 2009. "Dynamic Pricing Without Knowing the Demand Function: Risk Bounds and Near-Optimal Algorithms," Operations Research, INFORMS, vol. 57(6), pages 1407-1420, December.
    19. Xin Chen & David Simchi-Levi, 2004. "Coordinating Inventory Control and Pricing Strategies with Random Demand and Fixed Ordering Cost: The Finite Horizon Case," Operations Research, INFORMS, vol. 52(6), pages 887-896, December.
    20. Greenhut,Melvin L. & Norman,George & Hung,Chao-Shun, 1987. "The Economics of Imperfect Competition," Cambridge Books, Cambridge University Press, number 9780521305525, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahmutoğulları, Özlem & Yaman, Hande, 2023. "Robust alternative fuel refueling station location problem with routing under decision-dependent flow uncertainty," European Journal of Operational Research, Elsevier, vol. 306(1), pages 173-188.
    2. Hafezi, Maryam & Zhao, Xuan & Zolfagharinia, Hossein, 2023. "Together we stand? Co-opetition for the development of green products," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1417-1438.
    3. Boxiao Chen & Xiuli Chao & Cong Shi, 2021. "Nonparametric Learning Algorithms for Joint Pricing and Inventory Control with Lost Sales and Censored Demand," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 726-756, May.
    4. Malo Huard & Rémy Garnier & Gilles Stoltz, 2020. "Hierarchical robust aggregation of sales forecasts at aggregated levels in e-commerce, based on exponential smoothing and Holt's linear trend method," Working Papers hal-02794320, HAL.
    5. Ba, Luyao & Xie, Yangyang & Ma, Lijun, 2023. "Finite-horizon joint inventory-pricing optimization with non-concave demand and lost sales," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    6. Ashrafi, Hedieh & Thiele, Aurélie C., 2021. "A study of robust portfolio optimization with European options using polyhedral uncertainty sets," Operations Research Perspectives, Elsevier, vol. 8(C).
    7. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2020. "Model-free bounds for multi-asset options using option-implied information and their exact computation," Papers 2006.14288, arXiv.org, revised Jan 2022.
    8. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2023. "Model-Free Bounds for Multi-Asset Options Using Option-Implied Information and Their Exact Computation," Management Science, INFORMS, vol. 69(4), pages 2051-2068, April.
    9. Yu, Chao & Li, Haiying & Xu, Xinyue & Liu, Jun, 2020. "Data-driven approach for solving the route choice problem with traveling backward behavior in congested metro systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boxiao Chen & Xiuli Chao & Cong Shi, 2021. "Nonparametric Learning Algorithms for Joint Pricing and Inventory Control with Lost Sales and Censored Demand," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 726-756, May.
    2. Boxiao Chen & Xiuli Chao & Hyun-Soo Ahn, 2019. "Coordinating Pricing and Inventory Replenishment with Nonparametric Demand Learning," Operations Research, INFORMS, vol. 67(4), pages 1035-1052, July.
    3. Ru, Jun & Wang, Yunzeng, 2010. "Consignment contracting: Who should control inventory in the supply chain?," European Journal of Operational Research, Elsevier, vol. 201(3), pages 760-769, March.
    4. Boxiao Chen & David Simchi-Levi & Yining Wang & Yuan Zhou, 2022. "Dynamic Pricing and Inventory Control with Fixed Ordering Cost and Incomplete Demand Information," Management Science, INFORMS, vol. 68(8), pages 5684-5703, August.
    5. Özelkan, Ertunga C. & Lim, Churlzu & Adnan, Ziaul Haq, 2018. "Conditions of reverse bullwhip effect in pricing under joint decision of replenishment and pricing," International Journal of Production Economics, Elsevier, vol. 200(C), pages 207-223.
    6. Schulte, Benedikt & Sachs, Anna-Lena, 2020. "The price-setting newsvendor with Poisson demand," European Journal of Operational Research, Elsevier, vol. 283(1), pages 125-137.
    7. Thomas Loots & Arnoud V. den Boer, 2023. "Data‐driven collusion and competition in a pricing duopoly with multinomial logit demand," Production and Operations Management, Production and Operations Management Society, vol. 32(4), pages 1169-1186, April.
    8. Lee, Eunji & Minner, Stefan, 2024. "How power structure and markup schemes impact supply chain channel efficiency under price-dependent stochastic demand," European Journal of Operational Research, Elsevier, vol. 318(1), pages 297-309.
    9. Qi Feng & Sirong Luo & J. George Shanthikumar, 2020. "Integrating Dynamic Pricing with Inventory Decisions Under Lost Sales," Management Science, INFORMS, vol. 66(5), pages 2232-2247, May.
    10. Xiuyan Ma, 2019. "Pricing to the Scenario: Price-Setting Newsvendor Models for Innovative Products," Mathematics, MDPI, vol. 7(9), pages 1-15, September.
    11. Qi Feng & Sirong Luo & Dan Zhang, 2014. "Dynamic Inventory–Pricing Control Under Backorder: Demand Estimation and Policy Optimization," Manufacturing & Service Operations Management, INFORMS, vol. 16(1), pages 149-160, February.
    12. Transchel, Sandra, 2017. "Inventory management under price-based and stockout-based substitution," European Journal of Operational Research, Elsevier, vol. 262(3), pages 996-1008.
    13. Yang, Chaolin & Xiong, Yi, 2020. "Nonparametric advertising budget allocation with inventory constraint," European Journal of Operational Research, Elsevier, vol. 285(2), pages 631-641.
    14. Omar Besbes & Assaf Zeevi, 2015. "On the (Surprising) Sufficiency of Linear Models for Dynamic Pricing with Demand Learning," Management Science, INFORMS, vol. 61(4), pages 723-739, April.
    15. Lap Mui Ann Chan & David Simchi-Levi & Julie Swann, 2006. "Pricing, Production, and Inventory Policies for Manufacturing with Stochastic Demand and Discretionary Sales," Manufacturing & Service Operations Management, INFORMS, vol. 8(2), pages 149-168, January.
    16. Ningyuan Chen & Guillermo Gallego, 2021. "Nonparametric Pricing Analytics with Customer Covariates," Operations Research, INFORMS, vol. 69(3), pages 974-984, May.
    17. Avinadav, Tal & Herbon, Avi & Spiegel, Uriel, 2013. "Optimal inventory policy for a perishable item with demand function sensitive to price and time," International Journal of Production Economics, Elsevier, vol. 144(2), pages 497-506.
    18. Kyparisis, George J. & Koulamas, Christos, 2018. "Optimal pricing and seat allocation for a two-cabin airline revenue management problem," International Journal of Production Economics, Elsevier, vol. 201(C), pages 18-25.
    19. Yang, Xiangyu & Zhang, Jianghua & Hu, Jian-Qiang & Hu, Jiaqiao, 2024. "Nonparametric multi-product dynamic pricing with demand learning via simultaneous price perturbation," European Journal of Operational Research, Elsevier, vol. 319(1), pages 191-205.
    20. Rongchuan He & Ye Lu, 2021. "A Robust Price‐Setting Newsvendor Problem," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 276-292, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:67:y:2019:i:6:p:1564-1585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.