IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v65y2017i1p19-37.html
   My bibliography  Save this article

Robust Product Line Design

Author

Listed:
  • Dimitris Bertsimas

    (Sloan School of Management and Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

  • Velibor V. Mišić

    (Anderson School of Management, University of California, Los Angeles, Los Angeles, California 90095)

Abstract

The majority of approaches to product line design that have been proposed by marketing scientists assume that the underlying choice model that describes how the customer population will respond to a new product line is known precisely. In reality, however, marketers do not precisely know how the customer population will respond and can only obtain an estimate of the choice model from limited conjoint data. In this paper, we propose a new type of optimization approach for product line design under uncertainty. Our approach is based on the paradigm of robust optimization where, rather than optimizing the expected revenue with respect to a single model, one optimizes the worst-case expected revenue with respect to an uncertainty set of models. This framework allows us to account for parameter uncertainty, when we may be confident about the type of model structure but not about the values of the parameters, and structural uncertainty, when we may not even be confident about the right model structure to use to describe the customer population. Through computational experiments with a real conjoint data set, we demonstrate the benefits of our approach in addressing parameter and structural uncertainty. With regard to parameter uncertainty, we show that product lines designed without accounting for parameter uncertainty are fragile and can experience worst-case revenue losses as high as 23%, and that the robust product line can significantly outperform the nominal product line in the worst case, with relative improvements of up to 14%. With regard to structural uncertainty, we similarly show that product lines that are designed for a single model structure can be highly suboptimal under other structures (worst-case losses of up to 37%), while a product line that optimizes against the worst of a set of structurally distinct models can outperform single model product lines by as much as 55% in the worst case and can guarantee good aggregate performance over structurally distinct models.

Suggested Citation

  • Dimitris Bertsimas & Velibor V. Mišić, 2017. "Robust Product Line Design," Operations Research, INFORMS, vol. 65(1), pages 19-37, February.
  • Handle: RePEc:inm:oropre:v:65:y:2017:i:1:p:19-37
    DOI: 10.1287/opre.2016.1546
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2016.1546
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2016.1546?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kraus, Ursula G. & Yano, Candace Arai, 2003. "Product line selection and pricing under a share-of-surplus choice model," European Journal of Operational Research, Elsevier, vol. 150(3), pages 653-671, November.
    2. Olivier Toubia & Duncan I. Simester & John R. Hauser & Ely Dahan, 2003. "Fast Polyhedral Adaptive Conjoint Estimation," Marketing Science, INFORMS, vol. 22(3), pages 273-303.
    3. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    4. Alexandre Belloni & Robert Freund & Matthew Selove & Duncan Simester, 2008. "Optimizing Product Line Designs: Efficient Methods and Comparisons," Management Science, INFORMS, vol. 54(9), pages 1544-1552, September.
    5. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, January.
    6. Gregory Dobson & Shlomo Kalish, 1988. "Positioning and Pricing a Product Line," Marketing Science, INFORMS, vol. 7(2), pages 107-125.
    7. Peter E. Rossi & Greg M. Allenby, 2003. "Bayesian Statistics and Marketing," Marketing Science, INFORMS, vol. 22(3), pages 304-328, July.
    8. Dimitris Bertsimas & Aurélie Thiele, 2006. "A Robust Optimization Approach to Inventory Theory," Operations Research, INFORMS, vol. 54(1), pages 150-168, February.
    9. Paat Rusmevichientong & Huseyin Topaloglu, 2012. "Robust Assortment Optimization in Revenue Management Under the Multinomial Logit Choice Model," Operations Research, INFORMS, vol. 60(4), pages 865-882, August.
    10. Kyle D. Chen & Warren H. Hausman, 2000. "Technical Note: Mathematical Properties of the Optimal Product Line Selection Problem Using Choice-Based Conjoint Analysis," Management Science, INFORMS, vol. 46(2), pages 327-332, February.
    11. Miles Lubin & Iain Dunning, 2015. "Computing in Operations Research Using Julia," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 238-248, May.
    12. Rajeev Kohli & R. Sukumar, 1990. "Heuristics for Product-Line Design Using Conjoint Analysis," Management Science, INFORMS, vol. 36(12), pages 1464-1478, December.
    13. Hamparsum Bozdogan, 1987. "Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 345-370, September.
    14. Paul E. Green & Abba M. Krieger, 1985. "Models and Heuristics for Product Line Selection," Marketing Science, INFORMS, vol. 4(1), pages 1-19.
    15. D. Goldfarb & G. Iyengar, 2003. "Robust Portfolio Selection Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 1-38, February.
    16. Allenby, Greg M. & Rossi, Peter E., 1998. "Marketing models of consumer heterogeneity," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 57-78, November.
    17. Gregory Dobson & Shlomo Kalish, 1993. "Heuristics for Pricing and Positioning a Product-Line Using Conjoint and Cost Data," Management Science, INFORMS, vol. 39(2), pages 160-175, February.
    18. Richard D. McBride & Fred S. Zufryden, 1988. "An Integer Programming Approach to the Optimal Product Line Selection Problem," Marketing Science, INFORMS, vol. 7(2), pages 126-140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Wei & Lyu, Gaoyan & Cui, Wei & Li, Yongjian, 2021. "Strategic technology commercialization in the supply chain under network effects," International Journal of Production Economics, Elsevier, vol. 231(C).
    2. Francesco Moresino, 2021. "A Robust Share-of-Choice Model," Mathematics, MDPI, vol. 9(3), pages 1-10, February.
    3. Pantourakis, Michail & Tsafarakis, Stelios & Zervoudakis, Konstantinos & Altsitsiadis, Efthymios & Andronikidis, Andreas & Ntamadaki, Vasiliki, 2022. "Clonal selection algorithms for optimal product line design: A comparative study," European Journal of Operational Research, Elsevier, vol. 298(2), pages 585-595.
    4. Tan Wang & Genaro Gutierrez, 2022. "Robust Product Line Design by Protecting the Downside While Minding the Upside," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 194-217, January.
    5. Peter Buchholz & Dimitri Scheftelowitsch, 2019. "Computation of weighted sums of rewards for concurrent MDPs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(1), pages 1-42, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitris Bertsimas & Velibor V. Mišić, 2017. "Robust Product Line Design," Operations Research, INFORMS, vol. 65(1), pages 19-37, February.
    2. Dimitris Bertsimas & Velibor V. Mišić, 2019. "Exact First-Choice Product Line Optimization," Operations Research, INFORMS, vol. 67(3), pages 651-670, May.
    3. Tan Wang & Genaro Gutierrez, 2022. "Robust Product Line Design by Protecting the Downside While Minding the Upside," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 194-217, January.
    4. Hongmin Li & Scott Webster & Gwangjae Yu, 2020. "Product Design Under Multinomial Logit Choices: Optimization of Quality and Prices in an Evolving Product Line," Manufacturing & Service Operations Management, INFORMS, vol. 22(5), pages 1011-1025, September.
    5. Xinfang (Jocelyn) Wang & Jeffrey D. Camm & David J. Curry, 2009. "A Branch-and-Price Approach to the Share-of-Choice Product Line Design Problem," Management Science, INFORMS, vol. 55(10), pages 1718-1728, October.
    6. Michalek, Jeremy J. & Ebbes, Peter & Adigüzel, Feray & Feinberg, Fred M. & Papalambros, Panos Y., 2011. "Enhancing marketing with engineering: Optimal product line design for heterogeneous markets," International Journal of Research in Marketing, Elsevier, vol. 28(1), pages 1-12.
    7. Maoqi Liu & Li Zheng & Changchun Liu & Zhi‐Hai Zhang, 2023. "From share of choice to buyers' welfare maximization: Bridging the gap through distributionally robust optimization," Production and Operations Management, Production and Operations Management Society, vol. 32(4), pages 1205-1222, April.
    8. Bechler, Georg & Steinhardt, Claudius & Mackert, Jochen & Klein, Robert, 2021. "Product line optimization in the presence of preferences for compromise alternatives," European Journal of Operational Research, Elsevier, vol. 288(3), pages 902-917.
    9. Schön, Cornelia, 2010. "On the product line selection problem under attraction choice models of consumer behavior," European Journal of Operational Research, Elsevier, vol. 206(1), pages 260-264, October.
    10. Winfried Steiner & Harald Hruschka, 2002. "A Probabilistic One-Step Approach to the Optimal Product Line Design Problem Using Conjoint and Cost Data," Review of Marketing Science Working Papers 1-4-1003, Berkeley Electronic Press.
    11. Kraus, Ursula G. & Yano, Candace Arai, 2003. "Product line selection and pricing under a share-of-surplus choice model," European Journal of Operational Research, Elsevier, vol. 150(3), pages 653-671, November.
    12. Day, Jamison M. & Venkataramanan, M.A., 2006. "Profitability in product line pricing and composition with manufacturing commonalities," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1782-1797, December.
    13. Alexandre Belloni & Robert Freund & Matthew Selove & Duncan Simester, 2008. "Optimizing Product Line Designs: Efficient Methods and Comparisons," Management Science, INFORMS, vol. 54(9), pages 1544-1552, September.
    14. Tallys H. Yunes & Dominic Napolitano & Alan Scheller-Wolf & Sridhar Tayur, 2007. "Building Efficient Product Portfolios at John Deere and Company," Operations Research, INFORMS, vol. 55(4), pages 615-629, August.
    15. Andrade, Xavier & Guimarães, Luís & Figueira, Gonçalo, 2021. "Product line selection of fast-moving consumer goods," Omega, Elsevier, vol. 102(C).
    16. Baier, Daniel & Gaul, Wolfgang, 1998. "Optimal product positioning based on paired comparison data," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 365-392, November.
    17. Domínguez, Concepción & Labbé, Martine & Marín, Alfredo, 2021. "The rank pricing problem with ties," European Journal of Operational Research, Elsevier, vol. 294(2), pages 492-506.
    18. Wilhelm, Wilbert E. & Xu, Kaihong, 2002. "Prescribing product upgrades, prices and production levels over time in a stochastic environment," European Journal of Operational Research, Elsevier, vol. 138(3), pages 601-621, May.
    19. Daria Dzyabura & Srikanth Jagabathula, 2018. "Offline Assortment Optimization in the Presence of an Online Channel," Management Science, INFORMS, vol. 64(6), pages 2767-2786, June.
    20. G. E. Fruchter & A. Fligler & R. S. Winer, 2006. "Optimal Product Line Design: Genetic Algorithm Approach to Mitigate Cannibalization," Journal of Optimization Theory and Applications, Springer, vol. 131(2), pages 227-244, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:65:y:2017:i:1:p:19-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.