IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v64y2016i1p158-166.html
   My bibliography  Save this article

Technical Note—A Note on Relaxations of the Choice Network Revenue Management Dynamic Program

Author

Listed:
  • Sumit Kunnumkal

    (Indian School of Business, Hyderabad, India 500032)

  • Kalyan Talluri

    (Imperial College Business School, South Kensington Campus, London SW7 2AZ, UK)

Abstract

In recent years, several approximation methods have been proposed for the choice network revenue management problem. These approximation methods are proposed because the dynamic programming formulation of the choice network revenue management problem is intractable even for moderately sized instances. In this paper, we consider three approximation methods that obtain upper bounds on the value function, namely, the choice deterministic linear program (CDLP), the affine approximation (AF), and the piecewise-linear approximation (PL). It is known that the piecewise-linear approximation bound is tighter than the affine bound, which in turn is tighter than CDLP. In this paper, we prove bounds on how much the affine and piecewise-linear approximations can tighten CDLP. We show (i) the gap between the AF and CDLP bounds is at most a factor of 1 + 1 / ( min i { r i 1 } ) , where r i 1 > 0 are the resource capacities, and (ii) the gap between the piecewise-linear and CDLP bounds is within a factor of 2. Moreover, we show that these gaps are essentially tight. Our results hold for any discrete-choice model and do not involve any asymptotic scaling. Our results are surprising because calculating the AF bound is NP-hard and CDLP is tractable for a single-segment multinomial logit model; our result implies that if a firm has all resource capacities of 100, the gap between the two bounds, however, is at most 1.01.

Suggested Citation

  • Sumit Kunnumkal & Kalyan Talluri, 2016. "Technical Note—A Note on Relaxations of the Choice Network Revenue Management Dynamic Program," Operations Research, INFORMS, vol. 64(1), pages 158-166, February.
  • Handle: RePEc:inm:oropre:v:64:y:2016:i:1:p:158-166
    DOI: 10.1287/opre.2015.1453
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2015.1453
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2015.1453?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. William L. Cooper, 2002. "Asymptotic Behavior of an Allocation Policy for Revenue Management," Operations Research, INFORMS, vol. 50(4), pages 720-727, August.
    2. Juan José Miranda Bront & Isabel Méndez-Díaz & Gustavo Vulcano, 2009. "A Column Generation Algorithm for Choice-Based Network Revenue Management," Operations Research, INFORMS, vol. 57(3), pages 769-784, June.
    3. Meissner, Joern & Strauss, Arne, 2012. "Network revenue management with inventory-sensitive bid prices and customer choice," European Journal of Operational Research, Elsevier, vol. 216(2), pages 459-468.
    4. Paat Rusmevichientong & David Shmoys & Chaoxu Tong & Huseyin Topaloglu, 2014. "Assortment Optimization under the Multinomial Logit Model with Random Choice Parameters," Production and Operations Management, Production and Operations Management Society, vol. 23(11), pages 2023-2039, November.
    5. Qian Liu & Garrett van Ryzin, 2008. "On the Choice-Based Linear Programming Model for Network Revenue Management," Manufacturing & Service Operations Management, INFORMS, vol. 10(2), pages 288-310, October.
    6. Dan Zhang & Daniel Adelman, 2009. "An Approximate Dynamic Programming Approach to Network Revenue Management with Customer Choice," Transportation Science, INFORMS, vol. 43(3), pages 381-394, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sumit Kunnumkal & Kalyan Talluri, 2019. "Choice Network Revenue Management Based on New Tractable Approximations," Transportation Science, INFORMS, vol. 53(6), pages 1591-1608, November.
    2. Yiwei Chen & Nikolaos Trichakis, 2021. "Technical Note—On Revenue Management with Strategic Customers Choosing When and What to Buy," Operations Research, INFORMS, vol. 69(1), pages 175-187, January.
    3. Strauss, Arne K. & Klein, Robert & Steinhardt, Claudius, 2018. "A review of choice-based revenue management: Theory and methods," European Journal of Operational Research, Elsevier, vol. 271(2), pages 375-387.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sumit Kunnumkal & Kalyan Talluri, 2019. "Choice Network Revenue Management Based on New Tractable Approximations," Transportation Science, INFORMS, vol. 53(6), pages 1591-1608, November.
    2. Dan Zhang, 2011. "An Improved Dynamic Programming Decomposition Approach for Network Revenue Management," Manufacturing & Service Operations Management, INFORMS, vol. 13(1), pages 35-52, April.
    3. Sumit Kunnumkal & Kalyan Talluri, 2019. "A strong Lagrangian relaxation for general discrete-choice network revenue management," Computational Optimization and Applications, Springer, vol. 73(1), pages 275-310, May.
    4. Jacob B. Feldman & Huseyin Topaloglu, 2017. "Revenue Management Under the Markov Chain Choice Model," Operations Research, INFORMS, vol. 65(5), pages 1322-1342, October.
    5. Strauss, Arne K. & Klein, Robert & Steinhardt, Claudius, 2018. "A review of choice-based revenue management: Theory and methods," European Journal of Operational Research, Elsevier, vol. 271(2), pages 375-387.
    6. Thomas W. M. Vossen & Dan Zhang, 2015. "Reductions of Approximate Linear Programs for Network Revenue Management," Operations Research, INFORMS, vol. 63(6), pages 1352-1371, December.
    7. Guang Li & Paat Rusmevichientong & Huseyin Topaloglu, 2015. "The d -Level Nested Logit Model: Assortment and Price Optimization Problems," Operations Research, INFORMS, vol. 63(2), pages 325-342, April.
    8. Nicolas Houy & François Le Grand, 2015. "The Monte Carlo first-come-first-served heuristic for network revenue management," Working Papers halshs-01155698, HAL.
    9. Fernando Bernstein & A. Gürhan Kök & Lei Xie, 2015. "Dynamic Assortment Customization with Limited Inventories," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 538-553, October.
    10. Paat Rusmevichientong & Zuo-Jun Max Shen & David B. Shmoys, 2010. "Dynamic Assortment Optimization with a Multinomial Logit Choice Model and Capacity Constraint," Operations Research, INFORMS, vol. 58(6), pages 1666-1680, December.
    11. Paat Rusmevichientong & Huseyin Topaloglu, 2012. "Robust Assortment Optimization in Revenue Management Under the Multinomial Logit Choice Model," Operations Research, INFORMS, vol. 60(4), pages 865-882, August.
    12. Kalyan Talluri, 2014. "New Formulations for Choice Network Revenue Management," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 401-413, May.
    13. Nicolas Houy & François Le Grand, 2015. "Financing and advising with (over)confident entrepreneurs : an experimental investigation," Working Papers 1514, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    14. Meng Qi & Ho‐Yin Mak & Zuo‐Jun Max Shen, 2020. "Data‐driven research in retail operations—A review," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(8), pages 595-616, December.
    15. Stefanus Jasin & Sunil Kumar, 2012. "A Re-Solving Heuristic with Bounded Revenue Loss for Network Revenue Management with Customer Choice," Mathematics of Operations Research, INFORMS, vol. 37(2), pages 313-345, May.
    16. Sebastian Koch & Jochen Gönsch & Michael Hassler & Robert Klein, 2016. "Practical decision rules for risk-averse revenue management using simulation-based optimization," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 15(6), pages 468-487, December.
    17. Sumit Kunnumkal & Kalyan Talluri, 2014. "On the tractability of the piecewise-linear approximation for general discrete-choice network revenue management," Economics Working Papers 1409, Department of Economics and Business, Universitat Pompeu Fabra.
    18. Dan Zhang & Larry Weatherford, 2017. "Dynamic Pricing for Network Revenue Management: A New Approach and Application in the Hotel Industry," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 18-35, February.
    19. Sumit Kunnumkal & Kalyan Talluri, 2014. "On the Tractability of the Piecewiselinear Approximation for General Discrete-Choice Network Revenue Management," Working Papers 749, Barcelona School of Economics.
    20. Guillermo Gallego & Huseyin Topaloglu, 2014. "Constrained Assortment Optimization for the Nested Logit Model," Management Science, INFORMS, vol. 60(10), pages 2583-2601, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:64:y:2016:i:1:p:158-166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.