IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v63y2015i6p1512-1527.html
   My bibliography  Save this article

Single Commodity Stochastic Network Design Under Probabilistic Constraint with Discrete Random Variables

Author

Listed:
  • András Prékopa

    (Rutgers Center for Operations Research, Piscataway, New Jersey 08854)

  • Merve Unuvar

    (IBM T. J. Watson Research Center, Yorktown Heights, New York 10598)

Abstract

Single commodity networks are considered, where demands at the nodes are random. The problem is to find minimum cost optimal built in capacities at the nodes and arcs subject to the constraint that all demands should be met on a prescribed probability level (reliability constraint) and some deterministic constraints should be satisfied. The reliability constraint is formulated in terms of the Gale–Hoffman feasibility inequalities, but their number is reduced by elimination technique. The concept of a p -efficient point is used in a smart way to convert and then relax the problem into an LP. The p -efficient points are simultaneously generated with the solution of the LP. The joint distribution of the demands is used to obtain the p -efficient points for all stochastic inequalities that were not eliminated and the solution of a multiple choice knapsack problem is used to generate p -efficient points. The model can be applied to planning in interconnected power systems, flood control networks, design of shelter and road capacities in evacuation, parking lot capacities, financial networks, cloud computing system design, etc. Numerical examples are presented.

Suggested Citation

  • András Prékopa & Merve Unuvar, 2015. "Single Commodity Stochastic Network Design Under Probabilistic Constraint with Discrete Random Variables," Operations Research, INFORMS, vol. 63(6), pages 1512-1527, December.
  • Handle: RePEc:inm:oropre:v:63:y:2015:i:6:p:1512-1527
    DOI: 10.1287/opre.2015.1434
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2015.1434
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2015.1434?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lejeune, Miguel & Noyan, Nilay, 2010. "Mathematical programming approaches for generating p-efficient points," European Journal of Operational Research, Elsevier, vol. 207(2), pages 590-600, December.
    2. Pisinger, David, 1995. "A minimal algorithm for the multiple-choice knapsack problem," European Journal of Operational Research, Elsevier, vol. 83(2), pages 394-410, June.
    3. András Prékopa & Endre Boros, 1991. "On the Existence of a Feasible Flow in a Stochastic Transportation Network," Operations Research, INFORMS, vol. 39(1), pages 119-129, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elçi, Özgün & Noyan, Nilay, 2018. "A chance-constrained two-stage stochastic programming model for humanitarian relief network design," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 55-83.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christensen, Tue R.L. & Labbé, Martine, 2015. "A branch-cut-and-price algorithm for the piecewise linear transportation problem," European Journal of Operational Research, Elsevier, vol. 245(3), pages 645-655.
    2. Zhong, Tao & Young, Rhonda, 2010. "Multiple Choice Knapsack Problem: Example of planning choice in transportation," Evaluation and Program Planning, Elsevier, vol. 33(2), pages 128-137, May.
    3. Shuaian Wang & Dan Zhuge & Lu Zhen & Chung-Yee Lee, 2021. "Liner Shipping Service Planning Under Sulfur Emission Regulations," Transportation Science, INFORMS, vol. 55(2), pages 491-509, March.
    4. Walter, Rico & Schulze, Philipp & Scholl, Armin, 2021. "SALSA: Combining branch-and-bound with dynamic programming to smoothen workloads in simple assembly line balancing," European Journal of Operational Research, Elsevier, vol. 295(3), pages 857-873.
    5. Degraeve, Z. & Jans, R.F., 2003. "Improved Lower Bounds For The Capacitated Lot Sizing Problem With Set Up Times," ERIM Report Series Research in Management ERS-2003-026-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    6. Mhand Hifi & Slim Sadfi & Abdelkader Sbihi, 2004. "An Exact Algorithm for the Multiple-choice Multidimensional Knapsack Problem," Post-Print halshs-03322716, HAL.
    7. M Hifi & M Michrafy, 2006. "A reactive local search-based algorithm for the disjunctively constrained knapsack problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(6), pages 718-726, June.
    8. Sbihi, Abdelkader, 2010. "A cooperative local search-based algorithm for the Multiple-Scenario Max-Min Knapsack Problem," European Journal of Operational Research, Elsevier, vol. 202(2), pages 339-346, April.
    9. Boysen, Nils & Fliedner, Malte, 2008. "A versatile algorithm for assembly line balancing," European Journal of Operational Research, Elsevier, vol. 184(1), pages 39-56, January.
    10. Miguel Lejeune, 2012. "Pattern definition of the p-efficiency concept," Annals of Operations Research, Springer, vol. 200(1), pages 23-36, November.
    11. Tue R. L. Christensen & Kim Allan Andersen & Andreas Klose, 2013. "Solving the Single-Sink, Fixed-Charge, Multiple-Choice Transportation Problem by Dynamic Programming," Transportation Science, INFORMS, vol. 47(3), pages 428-438, August.
    12. Edward Y H Lin & Chung-Min Wu, 2004. "The multiple-choice multi-period knapsack problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(2), pages 187-197, February.
    13. Künnen, Jan-Rasmus & Strauss, Arne K., 2022. "The value of flexible flight-to-route assignments in pre-tactical air traffic management," Transportation Research Part B: Methodological, Elsevier, vol. 160(C), pages 76-96.
    14. Dauzère-Pérès, Stéphane & Hassoun, Michael, 2020. "On the importance of variability when managing metrology capacity," European Journal of Operational Research, Elsevier, vol. 282(1), pages 267-276.
    15. Subhash C. Sarin & Hanif D. Sherali & Seon Ki Kim, 2014. "A branch‐and‐price approach for the stochastic generalized assignment problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(2), pages 131-143, March.
    16. Talal Alharbi & Anh Ninh & Ersoy Subasi & Munevver Mine Subasi, 2022. "The value of shape constraints in discrete moment problems: a review and extension," Annals of Operations Research, Springer, vol. 318(1), pages 1-31, November.
    17. Li, Xin & Qian, Zhuzhong & You, Ilsun & Lu, Sanglu, 2014. "Towards cost efficient mobile service and information management in ubiquitous environment with cloud resource scheduling," International Journal of Information Management, Elsevier, vol. 34(3), pages 319-328.
    18. Drexl, Andreas & Jørnsten, Kurt, 2007. "Pricing the multiple-choice nested knapsack problem," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 626, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    19. Mhand Hifi & Slim Sadfi & Abdelkader Sbihi, 2004. "An Exact Algorithm for the Multiple-choice Multidimensional Knapsack Problem," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-03322716, HAL.
    20. Michel, S. & Perrot, N. & Vanderbeck, F., 2009. "Knapsack problems with setups," European Journal of Operational Research, Elsevier, vol. 196(3), pages 909-918, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:63:y:2015:i:6:p:1512-1527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.