IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v65y2019i11p5091-5109.html
   My bibliography  Save this article

Capacity Allocation in Flexible Production Networks: Theory and Applications

Author

Listed:
  • Guodong Lyu

    (Science and Technology on Information Systems Engineering Laboratory, National University of Defense Technology, Changsha, 410073 Hunan, China, Department of Analytics and Operations, NUS Business School, National University of Singapore, SG 119245, Singapore)

  • Wang-Chi Cheung

    (Department of Industrial Systems Engineering and Management, NUS Engineering, National University of Singapore, SG 117576, Singapore)

  • Mabel C. Chou

    (Department of Analytics and Operations, NUS Business School, National University of Singapore, SG 119245, Singapore)

  • Chung-Piaw Teo

    (Department of Analytics and Operations, NUS Business School, National University of Singapore, SG 119245, Singapore, Institute of Operations Research and Analytics, National University of Singapore, SG 117602, Singapore)

  • Zhichao Zheng

    (Lee Kong Chian School of Business, Singapore Management University, SG 178899, Singapore)

  • Yuanguang Zhong

    (School of Business Administration, South China University of Technology, Guangzhou, 510640 Guangdong, China)

Abstract

In many production environments, a fixed network of capacity is shared flexibly between multiple products with random demands. What is the best way to configure the capacity of the production network and to allocate the available capacity to meet predetermined fill rate requirements? We develop a new approach for network capacity configuration and allocation and characterize the relationship between the capacity of the network and the attainable fill rate levels for the products, taking into account the flexibility structure of the network. This builds on a new randomized allocation mechanism to deliver the desired services. We use this theory to investigate the connection between the flexibility structure and capacity configuration. We provide a new perspective to the well-known phenomenon that “long chain is almost as good as the fully flexible network”: for given target fill rates, the required capacity level in a long-chain network is close to that in a fully flexible network and is much lower than a dedicated system. We apply these insights and techniques on problems arising in the design of last-mile delivery operations and in semiconductor production planning, using real data from two companies.

Suggested Citation

  • Guodong Lyu & Wang-Chi Cheung & Mabel C. Chou & Chung-Piaw Teo & Zhichao Zheng & Yuanguang Zhong, 2019. "Capacity Allocation in Flexible Production Networks: Theory and Applications," Management Science, INFORMS, vol. 65(11), pages 5091-5109, November.
  • Handle: RePEc:inm:ormnsc:v:65:y:2019:i:11:p:5091-5109
    DOI: 10.1287/mnsc.2018.3169
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/mnsc.2018.3169
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2018.3169?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Aydin Alptekinoglu & Arunava Banerjee & Anand Paul & Nikhil Jain, 2013. "Inventory Pooling to Deliver Differentiated Service," Manufacturing & Service Operations Management, INFORMS, vol. 15(1), pages 33-44, September.
    2. Mabel C. Chou & Geoffrey A. Chua & Chung-Piaw Teo & Huan Zheng, 2011. "Process Flexibility Revisited: The Graph Expander and Its Applications," Operations Research, INFORMS, vol. 59(5), pages 1090-1105, October.
    3. Antoine Désir & Vineet Goyal & Yehua Wei & Jiawei Zhang, 2016. "Sparse Process Flexibility Designs: Is the Long Chain Really Optimal?," Operations Research, INFORMS, vol. 64(2), pages 416-431, April.
    4. Yuanguang Zhong & Zhichao Zheng & Mabel C. Chou & Chung-Piaw Teo, 2018. "Resource Pooling and Allocation Policies to Deliver Differentiated Service," Management Science, INFORMS, vol. 64(4), pages 1555-1573, April.
    5. Hallgren, Mattias & Olhager, Jan, 2009. "Flexibility configurations: Empirical analysis of volume and product mix flexibility," Omega, Elsevier, vol. 37(4), pages 746-756, August.
    6. Fernando F. Suarez & Michael A. Cusumano & Charles H. Fine, 1996. "An Empirical Study of Manufacturing Flexibility in Printed Circuit Board Assembly," Operations Research, INFORMS, vol. 44(1), pages 223-240, February.
    7. Mabel C. Chou & Geoffrey A. Chua & Huan Zheng, 2014. "On the Performance of Sparse Process Structures in Partial Postponement Production Systems," Operations Research, INFORMS, vol. 62(2), pages 348-365, April.
    8. David Simchi-Levi & Yehua Wei, 2012. "Understanding the Performance of the Long Chain and Sparse Designs in Process Flexibility," Operations Research, INFORMS, vol. 60(5), pages 1125-1141, October.
    9. Mabel C. Chou & Geoffrey A. Chua & Chung-Piaw Teo & Huan Zheng, 2010. "Design for Process Flexibility: Efficiency of the Long Chain and Sparse Structure," Operations Research, INFORMS, vol. 58(1), pages 43-58, February.
    10. Xi Chen & Jiawei Zhang & Yuan Zhou, 2015. "Optimal Sparse Designs for Process Flexibility via Probabilistic Expanders," Operations Research, INFORMS, vol. 63(5), pages 1159-1176, October.
    11. David Simchi-Levi & Yehua Wei, 2015. "Worst-Case Analysis of Process Flexibility Designs," Operations Research, INFORMS, vol. 63(1), pages 166-185, February.
    12. Xuan Wang & Jiawei Zhang, 2015. "Process Flexibility: A Distribution-Free Bound on the Performance of k -Chain," Operations Research, INFORMS, vol. 63(3), pages 555-571, June.
    13. William C. Jordan & Stephen C. Graves, 1995. "Principles on the Benefits of Manufacturing Process Flexibility," Management Science, INFORMS, vol. 41(4), pages 577-594, April.
    14. Manu Goyal & Serguei Netessine, 2011. "Volume Flexibility, Product Flexibility, or Both: The Role of Demand Correlation and Product Substitution," Manufacturing & Service Operations Management, INFORMS, vol. 13(2), pages 180-193, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deng, Menghua & Bian, Bomin & Zhou, Yanlin & Ding, Jianpeng, 2023. "Distributionally robust production and replenishment problem for hydrogen supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    2. Auad, Ramon & Erera, Alan & Savelsbergh, Martin, 2023. "Courier satisfaction in rapid delivery systems using dynamic operating regions," Omega, Elsevier, vol. 121(C).
    3. Liu, Shuai & Hua, Guowei & Cheng, T.C.E. & Dong, Jingxin, 2021. "Unmanned vehicle distribution capacity sharing with demand surge under option contracts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    4. Liang, Jinpeng & Li, Liming & Zheng, Jianfeng & Tan, Zhijia, 2023. "Service-oriented container slot allocation policy under stochastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 176(C).
    5. Zheng Cui & Jianpeng Ding & Daniel Zhuoyu Long & Lianmin Zhang, 2023. "Target‐based resource pooling problem," Production and Operations Management, Production and Operations Management Society, vol. 32(4), pages 1187-1204, April.
    6. Rujeerapaiboon, Napat & Zhong, Yuanguang & Zhu, Dan, 2023. "Resilience of long chain under disruption," European Journal of Operational Research, Elsevier, vol. 309(2), pages 597-615.
    7. Yuanzheng Ma & Tong Wang & Huan Zheng, 2023. "On fairness and efficiency in nonprofit operations: Dynamic resource allocations," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1778-1792, June.
    8. Liu, Kanglin & Liu, Changchun & Xiang, Xi & Tian, Zhili, 2023. "Testing facility location and dynamic capacity planning for pandemics with demand uncertainty," European Journal of Operational Research, Elsevier, vol. 304(1), pages 150-168.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arash Asadpour & Xuan Wang & Jiawei Zhang, 2020. "Online Resource Allocation with Limited Flexibility," Management Science, INFORMS, vol. 66(2), pages 642-666, February.
    2. Zhen Xu & Hailun Zhang & Jiheng Zhang & Rachel Q. Zhang, 2020. "Online Demand Fulfillment Under Limited Flexibility," Management Science, INFORMS, vol. 66(10), pages 4667-4685, October.
    3. Cong Shi & Yehua Wei & Yuan Zhong, 2019. "Process Flexibility for Multiperiod Production Systems," Operations Research, INFORMS, vol. 67(5), pages 1300-1320, September.
    4. Xi Chen & Tengyu Ma & Jiawei Zhang & Yuan Zhou, 2019. "Optimal Design of Process Flexibility for General Production Systems," Operations Research, INFORMS, vol. 67(2), pages 516-531, March.
    5. Shixin Wang & Xuan Wang & Jiawei Zhang, 2021. "A Review of Flexible Processes and Operations," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1804-1824, June.
    6. Rujeerapaiboon, Napat & Zhong, Yuanguang & Zhu, Dan, 2023. "Resilience of long chain under disruption," European Journal of Operational Research, Elsevier, vol. 309(2), pages 597-615.
    7. Timothy C. Y. Chan & Daniel Letourneau & Benjamin G. Potter, 2022. "Sparse flexible design: a machine learning approach," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 1066-1116, December.
    8. Jingui Xie & Yiming Fan & Mabel C. Chou, 2017. "Flexibility design in loss and queueing systems: efficiency of k-chain configuration," Flexible Services and Manufacturing Journal, Springer, vol. 29(2), pages 286-308, June.
    9. Shixin Wang, 2023. "The Power of Simple Menus in Robust Selling Mechanisms," Papers 2310.17392, arXiv.org, revised Sep 2024.
    10. Antoine Désir & Vineet Goyal & Yehua Wei & Jiawei Zhang, 2016. "Sparse Process Flexibility Designs: Is the Long Chain Really Optimal?," Operations Research, INFORMS, vol. 64(2), pages 416-431, April.
    11. Zhenzhen Yan & Sarah Yini Gao & Chung Piaw Teo, 2018. "On the Design of Sparse but Efficient Structures in Operations," Management Science, INFORMS, vol. 64(7), pages 3421-3445, July.
    12. Xuan Wang & Jiawei Zhang, 2015. "Process Flexibility: A Distribution-Free Bound on the Performance of k -Chain," Operations Research, INFORMS, vol. 63(3), pages 555-571, June.
    13. Chua, Geoffrey A. & Chen, Shaoxiang & Han, Zhiguang, 2016. "Hub and Chain: Process Flexibility Design in Non-Identical Systems Using Variance Information," European Journal of Operational Research, Elsevier, vol. 253(3), pages 625-638.
    14. Xi Chen & Jiawei Zhang & Yuan Zhou, 2015. "Optimal Sparse Designs for Process Flexibility via Probabilistic Expanders," Operations Research, INFORMS, vol. 63(5), pages 1159-1176, October.
    15. Timothy C. Y. Chan & Douglas Fearing, 2019. "Process Flexibility in Baseball: The Value of Positional Flexibility," Management Science, INFORMS, vol. 65(4), pages 1642-1666, April.
    16. Perraudat, Antoine & Dauzère-Pérès, Stéphane & Vialletelle, Philippe, 2022. "Robust tactical qualification decisions in flexible manufacturing systems," Omega, Elsevier, vol. 106(C).
    17. John N. Tsitsiklis & Kuang Xu, 2017. "Flexible Queueing Architectures," Operations Research, INFORMS, vol. 65(5), pages 1398-1413, October.
    18. Lingxiu Dong & Duo Shi & Fuqiang Zhang, 2022. "3D Printing and Product Assortment Strategy," Management Science, INFORMS, vol. 68(8), pages 5724-5744, August.
    19. Zheng Cui & Jianpeng Ding & Daniel Zhuoyu Long & Lianmin Zhang, 2023. "Target‐based resource pooling problem," Production and Operations Management, Production and Operations Management Society, vol. 32(4), pages 1187-1204, April.
    20. Verma, Nishant Kumar & Chatterjee, Ashish K., 2023. "Process flexibility in the presence of product modularity: Does modularity help?," International Journal of Production Economics, Elsevier, vol. 256(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:65:y:2019:i:11:p:5091-5109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.