IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v62y2014i1p160-181.html
   My bibliography  Save this article

A Probabilistic Model for Minmax Regret in Combinatorial Optimization

Author

Listed:
  • Karthik Natarajan

    (Engineering Systems and Design, Singapore University of Technology and Design, Singapore 138682, Republic of Singapore)

  • Dongjian Shi

    (Department of Mathematics, National University of Singapore, Singapore 119076, Republic of Singapore)

  • Kim-Chuan Toh

    (Department of Mathematics, National University of Singapore, Singapore 119076, Republic of Singapore)

Abstract

In this paper, we propose a new probabilistic model for minimizing the anticipated regret in combinatorial optimization problems with distributional uncertainty in the objective coefficients. The interval uncertainty representation of data is supplemented with information on the marginal distributions. As a decision criterion, we minimize the worst-case conditional value at risk of regret. The proposed model includes the interval data minmax regret model as a special case. For the class of combinatorial optimization problems with a compact convex hull representation, a polynomial sized mixed-integer linear program is formulated when (a) the range and mean are known, and (b) the range, mean, and mean absolute deviation are known; and a mixed-integer second order cone program is formulated when (c) the range, mean, and standard deviation are known. For the subset selection problem of choosing K elements of maximum total weight out of a set of N elements, the probabilistic regret model is shown to be solvable in polynomial time in the instances (a) and (b) above. This extends the current known polynomial complexity result for minmax regret subset selection with range information only.

Suggested Citation

  • Karthik Natarajan & Dongjian Shi & Kim-Chuan Toh, 2014. "A Probabilistic Model for Minmax Regret in Combinatorial Optimization," Operations Research, INFORMS, vol. 62(1), pages 160-181, February.
  • Handle: RePEc:inm:oropre:v:62:y:2014:i:1:p:160-181
    DOI: 10.1287/opre.2013.1212
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2013.1212
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2013.1212?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. NESTEROV, Yu., 2000. "Squared functional systems and optimization problems," LIDAM Reprints CORE 1472, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    3. Georgia Perakis & Guillaume Roels, 2008. "Regret in the Newsvendor Model with Partial Information," Operations Research, INFORMS, vol. 56(1), pages 188-203, February.
    4. Fred Glover & Eugene Woolsey, 1973. "Further Reduction of Zero-One Polynomial Programming Problems to Zero-One linear Programming Problems," Operations Research, INFORMS, vol. 21(1), pages 156-161, February.
    5. Karthik Natarajan & Miao Song & Chung-Piaw Teo, 2009. "Persistency Model and Its Applications in Choice Modeling," Management Science, INFORMS, vol. 55(3), pages 453-469, March.
    6. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    7. Jerzy Kamburowski, 1985. "Technical Note—A Note on the Stochastic Shortest Route Problem," Operations Research, INFORMS, vol. 33(3), pages 696-698, June.
    8. Shushang Zhu & Masao Fukushima, 2009. "Worst-Case Conditional Value-at-Risk with Application to Robust Portfolio Management," Operations Research, INFORMS, vol. 57(5), pages 1155-1168, October.
    9. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    10. Frittelli, Marco & Rosazza Gianin, Emanuela, 2002. "Putting order in risk measures," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1473-1486, July.
    11. Fred Glover, 1975. "Improved Linear Integer Programming Formulations of Nonlinear Integer Problems," Management Science, INFORMS, vol. 22(4), pages 455-460, December.
    12. Jinfeng Yue & Bintong Chen & Min-Chiang Wang, 2006. "Expected Value of Distribution Information for the Newsvendor Problem," Operations Research, INFORMS, vol. 54(6), pages 1128-1136, December.
    13. Fred Glover & Eugene Woolsey, 1974. "Technical Note—Converting the 0-1 Polynomial Programming Problem to a 0-1 Linear Program," Operations Research, INFORMS, vol. 22(1), pages 180-182, February.
    14. Anthony Man-Cho So & Jiawei Zhang & Yinyu Ye, 2009. "Stochastic Combinatorial Optimization with Controllable Risk Aversion Level," Mathematics of Operations Research, INFORMS, vol. 34(3), pages 522-537, August.
    15. Gideon Weiss, 1986. "Stochastic Bounds on Distributions of Optimal Value Functions with Applications to PERT, Network Flows and Reliability," Operations Research, INFORMS, vol. 34(4), pages 595-605, August.
    16. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    17. Ahmed, Shabbir & Cakmak, Ulas & Shapiro, Alexander, 2007. "Coherent risk measures in inventory problems," European Journal of Operational Research, Elsevier, vol. 182(1), pages 226-238, October.
    18. John R. Birge & Marilyn J. Maddox, 1995. "Bounds on Expected Project Tardiness," Operations Research, INFORMS, vol. 43(5), pages 838-850, October.
    19. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adam Kasperski & Paweł Zieliński, 2019. "Risk-averse single machine scheduling: complexity and approximation," Journal of Scheduling, Springer, vol. 22(5), pages 567-580, October.
    2. Benati, S. & Conde, E., 2022. "A relative robust approach on expected returns with bounded CVaR for portfolio selection," European Journal of Operational Research, Elsevier, vol. 296(1), pages 332-352.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mario Brandtner, 2016. "Spektrale Risikomaße: Konzeption, betriebswirtschaftliche Anwendungen und Fallstricke," Management Review Quarterly, Springer, vol. 66(2), pages 75-115, April.
    2. Geissel Sebastian & Sass Jörn & Seifried Frank Thomas, 2018. "Optimal expected utility risk measures," Statistics & Risk Modeling, De Gruyter, vol. 35(1-2), pages 73-87, January.
    3. Weiwei Li & Dejian Tian, 2023. "Robust optimized certainty equivalents and quantiles for loss positions with distribution uncertainty," Papers 2304.04396, arXiv.org.
    4. Marcelo Brutti Righi & Paulo Sergio Ceretta, 2015. "Shortfall Deviation Risk: An alternative to risk measurement," Papers 1501.02007, arXiv.org, revised May 2016.
    5. Steven Kou & Xianhua Peng & Chris C. Heyde, 2013. "External Risk Measures and Basel Accords," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 393-417, August.
    6. Bauerle, Nicole & Muller, Alfred, 2006. "Stochastic orders and risk measures: Consistency and bounds," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 132-148, February.
    7. Qiu, Ruozhen & Shang, Jennifer & Huang, Xiaoyuan, 2014. "Robust inventory decision under distribution uncertainty: A CVaR-based optimization approach," International Journal of Production Economics, Elsevier, vol. 153(C), pages 13-23.
    8. Brandtner, Mario & Kürsten, Wolfgang & Rischau, Robert, 2018. "Entropic risk measures and their comparative statics in portfolio selection: Coherence vs. convexity," European Journal of Operational Research, Elsevier, vol. 264(2), pages 707-716.
    9. Gabriele Canna & Francesca Centrone & Emanuela Rosazza Gianin, 2021. "Capital Allocation Rules and the No-Undercut Property," Mathematics, MDPI, vol. 9(2), pages 1-13, January.
    10. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    11. H. Fink & S. Geissel & J. Sass & F. T. Seifried, 2019. "Implied risk aversion: an alternative rating system for retail structured products," Review of Derivatives Research, Springer, vol. 22(3), pages 357-387, October.
    12. Zhiping Chen & Qianhui Hu, 2018. "On Coherent Risk Measures Induced by Convex Risk Measures," Methodology and Computing in Applied Probability, Springer, vol. 20(2), pages 673-698, June.
    13. Qiu, Ruozhen & Sun, Minghe & Lim, Yun Fong, 2017. "Optimizing (s, S) policies for multi-period inventory models with demand distribution uncertainty: Robust dynamic programing approaches," European Journal of Operational Research, Elsevier, vol. 261(3), pages 880-892.
    14. Maria Scutellà & Raffaella Recchia, 2013. "Robust portfolio asset allocation and risk measures," Annals of Operations Research, Springer, vol. 204(1), pages 145-169, April.
    15. Miller, Naomi & Ruszczynski, Andrzej, 2008. "Risk-adjusted probability measures in portfolio optimization with coherent measures of risk," European Journal of Operational Research, Elsevier, vol. 191(1), pages 193-206, November.
    16. Jaume Belles‐Sampera & Montserrat Guillén & Miguel Santolino, 2014. "Beyond Value‐at‐Risk: GlueVaR Distortion Risk Measures," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 121-134, January.
    17. Massimiliano Amarante, 2016. "A representation of risk measures," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 39(1), pages 95-103, April.
    18. Dan A. Iancu & Marek Petrik & Dharmashankar Subramanian, 2015. "Tight Approximations of Dynamic Risk Measures," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 655-682, March.
    19. Wang, Fan & Zhang, Chao & Zhang, Hui & Xu, Liang, 2021. "Short-term physician rescheduling model with feature-driven demand for mental disorders outpatients," Omega, Elsevier, vol. 105(C).
    20. Brandtner, Mario, 2018. "Expected Shortfall, spectral risk measures, and the aggravating effect of background risk, or: risk vulnerability and the problem of subadditivity," Journal of Banking & Finance, Elsevier, vol. 89(C), pages 138-149.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:62:y:2014:i:1:p:160-181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.