IDEAS home Printed from https://ideas.repec.org/a/spr/queues/v87y2017i3d10.1007_s11134-017-9543-0.html
   My bibliography  Save this article

Pooling in tandem queueing networks with non-collaborative servers

Author

Listed:
  • Nilay Tanık Argon

    (University of North Carolina)

  • Sigrún Andradóttir

    (Georgia Institute of Technology)

Abstract

This paper considers pooling several adjacent stations in a tandem network of single-server stations with finite buffers. When stations are pooled, we assume that the tasks at those stations are pooled but the servers are not. More specifically, each server at the pooled station picks a job from the incoming buffer of the pooled station and conducts all tasks required for that job at the pooled station before that job is placed in the outgoing buffer. For such a system, we provide sufficient conditions on the buffer capacities and service times under which pooling increases the system throughput by means of sample-path comparisons. Our numerical results suggest that pooling in a tandem line generally improves the system throughput—substantially in many cases. Finally, our analytical and numerical results suggest that pooling servers in addition to tasks results in even larger throughput when service rates are additive and the two systems have the same total number of storage spaces.

Suggested Citation

  • Nilay Tanık Argon & Sigrún Andradóttir, 2017. "Pooling in tandem queueing networks with non-collaborative servers," Queueing Systems: Theory and Applications, Springer, vol. 87(3), pages 345-377, December.
  • Handle: RePEc:spr:queues:v:87:y:2017:i:3:d:10.1007_s11134-017-9543-0
    DOI: 10.1007/s11134-017-9543-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11134-017-9543-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11134-017-9543-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Avishai Mandelbaum & Martin I. Reiman, 1998. "On Pooling in Queueing Networks," Management Science, INFORMS, vol. 44(7), pages 971-981, July.
    2. Benjaafar, Saifallah, 1995. "Performance bounds for the effectiveness of pooling in multi-processing systems," European Journal of Operational Research, Elsevier, vol. 87(2), pages 375-388, December.
    3. Sigrún Andradóttir & Hayriye Ayhan & Douglas G. Down, 2003. "Dynamic Server Allocation for Queueing Networks with Flexible Servers," Operations Research, INFORMS, vol. 51(6), pages 952-968, December.
    4. Frederick S. Hillier & Kut C. So & Ronald W. Boling, 1993. "Notes: Toward Characterizing the Optimal Allocation of Storage Space in Production Line Systems with Variable Processing Times," Management Science, INFORMS, vol. 39(1), pages 126-133, January.
    5. Wallace J. Hopp & Eylem Tekin & Mark P. Van Oyen, 2004. "Benefits of Skill Chaining in Serial Production Lines with Cross-Trained Workers," Management Science, INFORMS, vol. 50(1), pages 83-98, January.
    6. Frederick S. Hillier & Kut C. So, 1996. "On the Simultaneous Optimization of Server and Work Allocations in Production Line Systems with Variable Processing Times," Operations Research, INFORMS, vol. 44(3), pages 435-443, June.
    7. Eylem Tekin & Wallace Hopp & Mark Van Oyen, 2009. "Pooling strategies for call center agent cross-training," IISE Transactions, Taylor & Francis Journals, vol. 41(6), pages 546-561.
    8. Genji Yamazaki & Hirotaka Sakasegawa & J. George Shanthikumar, 1992. "On Optimal Arrangement of Stations in a Tandem Queueing System with Blocking," Management Science, INFORMS, vol. 38(1), pages 137-153, January.
    9. Joel M. Calabrese, 1992. "Optimal Workload Allocation in Open Networks of Multiserver Queues," Management Science, INFORMS, vol. 38(12), pages 1792-1802, December.
    10. John J. Bartholdi & Donald D. Eisenstein & Robert D. Foley, 2001. "Performance of Bucket Brigades When Work Is Stochastic," Operations Research, INFORMS, vol. 49(5), pages 710-719, October.
    11. Sigrún Andradóttir & Hayriye Ayhan & Douglas G. Down, 2001. "Server Assignment Policies for Maximizing the Steady-State Throughput of Finite Queueing Systems," Management Science, INFORMS, vol. 47(10), pages 1421-1439, October.
    12. Arie Harel, 2011. "Convexity Results for the Erlang Delay and Loss Formulae When the Server Utilization Is Held Constant," Operations Research, INFORMS, vol. 59(6), pages 1420-1426, December.
    13. John A. Buzacott, 1996. "Commonalities in Reengineered Business Processes: Models and Issues," Management Science, INFORMS, vol. 42(5), pages 768-782, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sigrún Andradóttir & Hayriye Ayhan & Douglas G. Down, 2001. "Server Assignment Policies for Maximizing the Steady-State Throughput of Finite Queueing Systems," Management Science, INFORMS, vol. 47(10), pages 1421-1439, October.
    2. Sennott, Linn I. & Van Oyen, Mark P. & Iravani, Seyed M.R., 2006. "Optimal dynamic assignment of a flexible worker on an open production line with specialists," European Journal of Operational Research, Elsevier, vol. 170(2), pages 541-566, April.
    3. Tanja Mlinar & Philippe Chevalier, 2016. "Pooling heterogeneous products for manufacturing environments," 4OR, Springer, vol. 14(2), pages 173-200, June.
    4. Seyed M. Iravani & Mark P. Van Oyen & Katharine T. Sims, 2005. "Structural Flexibility: A New Perspective on the Design of Manufacturing and Service Operations," Management Science, INFORMS, vol. 51(2), pages 151-166, February.
    5. Sigrún Andradóttir & Hayriye Ayhan & Douglas G. Down, 2007. "Compensating for Failures with Flexible Servers," Operations Research, INFORMS, vol. 55(4), pages 753-768, August.
    6. Ramesh Arumugam & Maria Mayorga & Kevin Taaffe, 2009. "Inventory based allocation policies for flexible servers in serial systems," Annals of Operations Research, Springer, vol. 172(1), pages 1-23, November.
    7. Eser Kırkızlar & Sigrún Andradóttir & Hayriye Ayhan, 2010. "Robustness of efficient server assignment policies to service time distributions in finite‐buffered lines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(6), pages 563-582, September.
    8. Yi‐Chun Tsai & Nilay Tanık Argon, 2008. "Dynamic server assignment policies for assembly‐type queues with flexible servers," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(3), pages 234-251, April.
    9. Suri Gurumurthi & Saif Benjaafar, 2004. "Modeling and analysis of flexible queueing systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(5), pages 755-782, August.
    10. Peng Wang & Kai Pan & Zhenzhen Yan & Yun Fong Lim, 2022. "Managing Stochastic Bucket Brigades on Discrete Work Stations," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 358-373, January.
    11. Eser Kırkızlar & Sigrún Andradóttir & Hayriye Ayhan, 2012. "Flexible Servers in Understaffed Tandem Lines," Production and Operations Management, Production and Operations Management Society, vol. 21(4), pages 761-777, July.
    12. Andradóttir, Sigrún & Ayhan, Hayriye & Down, Douglas G., 2017. "Resource pooling in the presence of failures: Efficiency versus risk," European Journal of Operational Research, Elsevier, vol. 256(1), pages 230-241.
    13. Legros, Benjamin & Jouini, Oualid & Dallery, Yves, 2015. "A flexible architecture for call centers with skill-based routing," International Journal of Production Economics, Elsevier, vol. 159(C), pages 192-207.
    14. Down, Douglas G. & Karakostas, George, 2008. "Maximizing throughput in queueing networks with limited flexibility," European Journal of Operational Research, Elsevier, vol. 187(1), pages 98-112, May.
    15. Yun Fong Lim & Bingnan Lu & Rowan Wang & Wenjia Zhang, 2020. "Flexibly Serving A Finite Number of Heterogeneous Jobs in A Tandem System," Production and Operations Management, Production and Operations Management Society, vol. 29(6), pages 1431-1447, June.
    16. Saied Samiedaluie & Vedat Verter, 2019. "The impact of specialization of hospitals on patient access to care; a queuing analysis with an application to a neurological hospital," Health Care Management Science, Springer, vol. 22(4), pages 709-726, December.
    17. S.M.R. Iravani & J.A. Buzacott & M.J.M. Posner, 2005. "A robust policy for serial agile production systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(1), pages 58-73, February.
    18. Nur Sunar & Yichen Tu & Serhan Ziya, 2021. "Pooled vs. Dedicated Queues when Customers Are Delay-Sensitive," Management Science, INFORMS, vol. 67(6), pages 3785-3802, June.
    19. Tuğçe Işık & Sigrún Andradóttir & Hayriye Ayhan, 2016. "Optimal control of queueing systems with non-collaborating servers," Queueing Systems: Theory and Applications, Springer, vol. 84(1), pages 79-110, October.
    20. MLINAR, Tanja B. & CHEVALIER, Philippe, 2013. "Pooling in manufacturing: do opposites attract?," LIDAM Discussion Papers CORE 2013040, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:87:y:2017:i:3:d:10.1007_s11134-017-9543-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.