IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v51y2003i6p952-968.html
   My bibliography  Save this article

Dynamic Server Allocation for Queueing Networks with Flexible Servers

Author

Listed:
  • Sigrún Andradóttir

    (School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0205)

  • Hayriye Ayhan

    (School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0205)

  • Douglas G. Down

    (Department of Computing and Software, McMaster University, Hamilton, Ontario, Canada L8S 4L7)

Abstract

This paper is concerned with the design of dynamic server assignment policies that maximize the capacity of queueing networks with flexible servers. Flexibility here means that each server may be capable of performing service at several different classes in the network. We assume that the interarrival times and the service times are independent and identically distributed, and that routing is probabilistic. We also allow for server switching times, which we assume to be independent and identically distributed. We deduce the value of a tight upper bound on the achievable capacity by equating the capacity of the queueing network model with that of a limiting deterministic fluid model. The maximal capacity of the deterministic model is given by the solution to a linear programming problem that also provides optimal allocations of servers to classes. We construct particular server assignment policies, called generalized round-robin policies, that guarantee that the capacity of the queueing network will be arbitrarily close to the computed upper bound. The performance of such policies is studied using numerical examples.

Suggested Citation

  • Sigrún Andradóttir & Hayriye Ayhan & Douglas G. Down, 2003. "Dynamic Server Allocation for Queueing Networks with Flexible Servers," Operations Research, INFORMS, vol. 51(6), pages 952-968, December.
  • Handle: RePEc:inm:oropre:v:51:y:2003:i:6:p:952-968
    DOI: 10.1287/opre.51.6.952.24913
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.51.6.952.24913
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.51.6.952.24913?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Frederick S. Hillier & Kut C. So, 1996. "On the Simultaneous Optimization of Server and Work Allocations in Production Line Systems with Variable Processing Times," Operations Research, INFORMS, vol. 44(3), pages 435-443, June.
    2. Sigman, Karl, 1990. "The stability of open queueing networks," Stochastic Processes and their Applications, Elsevier, vol. 35(1), pages 11-25, June.
    3. Sigrún Andradóttir & Hayriye Ayhan & Douglas G. Down, 2001. "Server Assignment Policies for Maximizing the Steady-State Throughput of Finite Queueing Systems," Management Science, INFORMS, vol. 47(10), pages 1421-1439, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Down, Douglas G. & Karakostas, George, 2008. "Maximizing throughput in queueing networks with limited flexibility," European Journal of Operational Research, Elsevier, vol. 187(1), pages 98-112, May.
    2. Sigrún Andradóttir & Hayriye Ayhan & Douglas G. Down, 2007. "Compensating for Failures with Flexible Servers," Operations Research, INFORMS, vol. 55(4), pages 753-768, August.
    3. Ramesh Arumugam & Maria Mayorga & Kevin Taaffe, 2009. "Inventory based allocation policies for flexible servers in serial systems," Annals of Operations Research, Springer, vol. 172(1), pages 1-23, November.
    4. Nilay Tanık Argon & Sigrún Andradóttir, 2017. "Pooling in tandem queueing networks with non-collaborative servers," Queueing Systems: Theory and Applications, Springer, vol. 87(3), pages 345-377, December.
    5. Sigrún Andradóttir & Hayriye Ayhan & Douglas G. Down, 2001. "Server Assignment Policies for Maximizing the Steady-State Throughput of Finite Queueing Systems," Management Science, INFORMS, vol. 47(10), pages 1421-1439, October.
    6. Amarjit Budhiraja & Chihoon Lee, 2009. "Stationary Distribution Convergence for Generalized Jackson Networks in Heavy Traffic," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 45-56, February.
    7. Emmett J. Lodree & Nezih Altay & Robert A. Cook, 2019. "Staff assignment policies for a mass casualty event queuing network," Annals of Operations Research, Springer, vol. 283(1), pages 411-442, December.
    8. Xiuli Chao & Liming Liu & Shaohui Zheng, 2003. "Resource Allocation in Multisite Service Systems with Intersite Customer Flows," Management Science, INFORMS, vol. 49(12), pages 1739-1752, December.
    9. Gregory Dobson & Tolga Tezcan & Vera Tilson, 2013. "Optimal Workflow Decisions for Investigators in Systems with Interruptions," Management Science, INFORMS, vol. 59(5), pages 1125-1141, May.
    10. Xinchang Wang & Sigrún Andradóttir & Hayriye Ayhan, 2019. "Optimal pricing for tandem queues with finite buffers," Queueing Systems: Theory and Applications, Springer, vol. 92(3), pages 323-396, August.
    11. Legros, Benjamin & Jouini, Oualid & Akşin, O. Zeynep & Koole, Ger, 2020. "Front-office multitasking between service encounters and back-office tasks," European Journal of Operational Research, Elsevier, vol. 287(3), pages 946-963.
    12. Zhao, Yaping & Xu, Xiaoyun & Li, Haidong & Liu, Yanni, 2016. "Prioritized customer order scheduling to maximize throughput," European Journal of Operational Research, Elsevier, vol. 255(2), pages 345-356.
    13. Dimitrios G. Pandelis, 2014. "Optimal control of noncollaborative servers in two‐stage tandem queueing systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(6), pages 435-446, September.
    14. Seyed M. Iravani & Mark P. Van Oyen & Katharine T. Sims, 2005. "Structural Flexibility: A New Perspective on the Design of Manufacturing and Service Operations," Management Science, INFORMS, vol. 51(2), pages 151-166, February.
    15. Aili (Alice) Zou & Douglas G. Down, 2018. "Asymptotically Maximal Throughput in Tandem Systems with Flexible and Dedicated Servers," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(05), pages 1-15, October.
    16. Eser Kırkızlar & Sigrún Andradóttir & Hayriye Ayhan, 2010. "Robustness of efficient server assignment policies to service time distributions in finite‐buffered lines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(6), pages 563-582, September.
    17. Ward Whitt & Wei You, 2020. "Heavy-traffic limits for stationary network flows," Queueing Systems: Theory and Applications, Springer, vol. 95(1), pages 53-68, June.
    18. Dimitris Bertsimas & David Gamarnik & Alexander Anatoliy Rikun, 2011. "Performance Analysis of Queueing Networks via Robust Optimization," Operations Research, INFORMS, vol. 59(2), pages 455-466, April.
    19. Yi‐Chun Tsai & Nilay Tanık Argon, 2008. "Dynamic server assignment policies for assembly‐type queues with flexible servers," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(3), pages 234-251, April.
    20. Eugene Furman & Adam Diamant & Murat Kristal, 2021. "Customer Acquisition and Retention: A Fluid Approach for Staffing," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4236-4257, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:51:y:2003:i:6:p:952-968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.