Modeling Cross Correlation in Three-Moment Four-Parameter Decomposition Approximation of Queueing Networks
Author
Abstract
Suggested Citation
DOI: 10.1287/opre.1100.0893
Download full text from publisher
References listed on IDEAS
- Ward Whitt, 1995. "Variability Functions for Parametric-Decomposition Approximations of Queueing Networks," Management Science, INFORMS, vol. 41(10), pages 1704-1715, October.
- Gabriel R. Bitran & Devanath Tirupati, 1988. "Multiproduct Queueing Networks with Deterministic Routing: Decomposition Approach and the Notion of Interference," Management Science, INFORMS, vol. 34(1), pages 75-100, January.
- Kim, Sunkyo, 2004. "The heavy-traffic bottleneck phenomenon under splitting and superposition," European Journal of Operational Research, Elsevier, vol. 157(3), pages 736-745, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Vinarskiy, Miron, 2017. "A method of approximate analysis of an open exponential queuing network with losses due to finite shared buffers in multi-queue nodes," European Journal of Operational Research, Elsevier, vol. 258(1), pages 207-215.
- Jean-Sébastien Tancrez, 2020. "A decomposition method for assembly/disassembly systems with blocking and general distributions," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 272-296, June.
- Conlon, Thomas & Cotter, John & Gençay, Ramazan, 2018. "Long-run wavelet-based correlation for financial time series," European Journal of Operational Research, Elsevier, vol. 271(2), pages 676-696.
- Sarat Babu Moka & Yoni Nazarathy & Werner Scheinhardt, 2023. "Diffusion parameters of flows in stable multi-class queueing networks," Queueing Systems: Theory and Applications, Springer, vol. 103(3), pages 313-346, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sunkyo Kim, 2005. "Approximation of multiclass queueing networks with highly variable arrivals under deterministic routing," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(5), pages 399-408, August.
- Rabta, Boualem, 2013. "A hybrid method for performance analysis of G/G/m queueing networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 89(C), pages 38-49.
- Ward Whitt & Wei You, 2018. "Using Robust Queueing to Expose the Impact of Dependence in Single-Server Queues," Operations Research, INFORMS, vol. 66(1), pages 184-199, January.
- Kim, Sunkyo, 2004. "The heavy-traffic bottleneck phenomenon under splitting and superposition," European Journal of Operational Research, Elsevier, vol. 157(3), pages 736-745, September.
- Wu, Kan & Zhao, Ning, 2015. "Dependence among single stations in series and its applications in productivity improvement," European Journal of Operational Research, Elsevier, vol. 247(1), pages 245-258.
- Van Nyen, Pieter L. M. & Van Ooijen, Henny P. G. & Bertrand, J.W.M.J. Will M., 2004. "Simulation results on the performance of Albin and Whitt's estimation method for waiting times in integrated production-inventory systems," International Journal of Production Economics, Elsevier, vol. 90(2), pages 237-249, July.
- Sohner, Volkmar & Schneeweiss, Christoph, 1995. "Hierarchically integrated lot size optimization," European Journal of Operational Research, Elsevier, vol. 86(1), pages 73-90, October.
- Pradhan, Salil & Damodaran, Purushothaman & Srihari, Krishnaswami, 2008. "Predicting performance measures for Markovian type of manufacturing systems with product failures," European Journal of Operational Research, Elsevier, vol. 184(2), pages 725-744, January.
- Kumar Satyam & Ananth Krishnamurthy, 2013. "Performance analysis of CONWIP systems with batch size constraints," Annals of Operations Research, Springer, vol. 209(1), pages 85-114, October.
- Kris Lieckens & Nico Vandaele, 2016. "Differential evolution to solve the lot size problem in stochastic supply chain management systems," Annals of Operations Research, Springer, vol. 242(2), pages 239-263, July.
- Yang, Feng, 2010. "Neural network metamodeling for cycle time-throughput profiles in manufacturing," European Journal of Operational Research, Elsevier, vol. 205(1), pages 172-185, August.
- Papadopoulos, H. T. & Heavey, C., 1996. "Queueing theory in manufacturing systems analysis and design: A classification of models for production and transfer lines," European Journal of Operational Research, Elsevier, vol. 92(1), pages 1-27, July.
- Morabito, Reinaldo & de Souza, Mauricio C. & Vazquez, Mariana, 2014. "Approximate decomposition methods for the analysis of multicommodity flow routing in generalized queuing networks," European Journal of Operational Research, Elsevier, vol. 232(3), pages 618-629.
- Kavusturucu, Ayse & Gupta, Surendra M., 1999. "Manufacturing systems with machine vacations, arbitrary topology and finite buffers," International Journal of Production Economics, Elsevier, vol. 58(1), pages 1-15, January.
- Opher Baron & Antonis Economou & Athanasia Manou, 2018. "The state-dependent M / G / 1 queue with orbit," Queueing Systems: Theory and Applications, Springer, vol. 90(1), pages 89-123, October.
- Yang, Feng & Liu, Jingang, 2012. "Simulation-based transfer function modeling for transient analysis of general queueing systems," European Journal of Operational Research, Elsevier, vol. 223(1), pages 150-166.
- Bitran, Gabriel R. & Morabito, Reinaldo., 1995. "An overview of tradeoff curve analysis in the design of manufacturing systems," Working papers 3806-95., Massachusetts Institute of Technology (MIT), Sloan School of Management.
- Roy, D. & de Koster, M.B.M., 2015. "Stochastic Modeling of Unloading and Loading Operations at a Container Terminal using Automated Lifting Vehicles," ERIM Report Series Research in Management ERS-2015-005-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
- Bitran, Gabriel R. & Morabito, Reinaldo., 1994. "Open queueing networks : optimization and performance evaluation models for discrete manufacturing systems," Working papers 3743-94., Massachusetts Institute of Technology (MIT), Sloan School of Management.
- Feng Dong & Qiguo Gong & Hui Wang & Siyuan Yi & Yue Cai, 2019. "Rest Breaks Arrange Based on Empirical Studies of Productivity in Manufacturing Industry," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 9(9), pages 1043-1066, September.
More about this item
Keywords
parametric decomposition; queueing networks; splitting; superposition; autocorrelation; cross correlation; variability function; innovations;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:59:y:2011:i:2:p:480-497. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.