IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v247y2015i1p245-258.html
   My bibliography  Save this article

Dependence among single stations in series and its applications in productivity improvement

Author

Listed:
  • Wu, Kan
  • Zhao, Ning

Abstract

Theory of constraints has been commonly used in production systems to improve productivity. Since the improvement on an upstream workstation may have impact on its downstream servers, finding the true bottleneck is not trivial in a stochastic production line. Due to the analytical intractability of general tandem queues, we develop methods to quantify the dependence among stations through simulation. Dependence is defined by the contribution queue time at each station, and contribution factors are developed based on the insight from Friedman's reduction method and Jackson networks. In a tandem queue, the dependence among stations can be either diffusion or blocking, and their impact depends on the positions relative to the bottlenecks. Based on these results, we show that improving the performance of the system bottleneck may not be the most effective place to reduce system cycle time. Rather than making independence assumptions, the proposed method points out a promising direction and sheds light on the insights of the dependence in practical systems.

Suggested Citation

  • Wu, Kan & Zhao, Ning, 2015. "Dependence among single stations in series and its applications in productivity improvement," European Journal of Operational Research, Elsevier, vol. 247(1), pages 245-258.
  • Handle: RePEc:eee:ejores:v:247:y:2015:i:1:p:245-258
    DOI: 10.1016/j.ejor.2015.05.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722171500418X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.05.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James R. Jackson, 1957. "Networks of Waiting Lines," Operations Research, INFORMS, vol. 5(4), pages 518-521, August.
    2. Paul J. Burke, 1956. "The Output of a Queuing System," Operations Research, INFORMS, vol. 4(6), pages 699-704, December.
    3. Ward Whitt, 1995. "Variability Functions for Parametric-Decomposition Approximations of Queueing Networks," Management Science, INFORMS, vol. 41(10), pages 1704-1715, October.
    4. Richard R. Weber & Gideon Weiss, 1994. "The Cafeteria Process—Tandem Queues with 0-1 Dependent Service Times and the Bowl Shape Phenomenon," Operations Research, INFORMS, vol. 42(5), pages 895-912, October.
    5. Ronald W. Wolff, 1982. "Tandem Queues with Dependent Service Times in Light Traffic," Operations Research, INFORMS, vol. 30(4), pages 619-635, August.
    6. Kan Wu & Leon McGinnis & Bert Zwart, 2011. "Queueing models for a single machine subject to multiple types of interruptions," IISE Transactions, Taylor & Francis Journals, vol. 43(10), pages 753-759.
    7. Boxma, O. J. & Perry, D., 2001. "A queueing model with dependence between service and interarrival times," European Journal of Operational Research, Elsevier, vol. 128(3), pages 611-624, February.
    8. Wu, Kan, 2014. "Taxonomy of batch queueing models in manufacturing systems," European Journal of Operational Research, Elsevier, vol. 237(1), pages 129-135.
    9. Michael Pinedo & Ronald W. Wolff, 1982. "A Comparison Between Tandem Queues with Dependent and Independent Service Times," Operations Research, INFORMS, vol. 30(3), pages 464-479, June.
    10. Gabriel R. Bitran & Devanath Tirupati, 1988. "Multiproduct Queueing Networks with Deterministic Routing: Decomposition Approach and the Notion of Interference," Management Science, INFORMS, vol. 34(1), pages 75-100, January.
    11. Kan Wu & Leon McGinnis, 2013. "Interpolation approximations for queues in series," IISE Transactions, Taylor & Francis Journals, vol. 45(3), pages 273-290.
    12. Wu, Kan & McGinnis, Leon, 2012. "Performance evaluation for general queueing networks in manufacturing systems: Characterizing the trade-off between queue time and utilization," European Journal of Operational Research, Elsevier, vol. 221(2), pages 328-339.
    13. Henry D. Friedman, 1965. "Reduction Methods for Tandem Queuing Systems," Operations Research, INFORMS, vol. 13(1), pages 121-131, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maddah, Bacel & Nasr, Walid W. & Charanek, Ali, 2017. "A multi-station system for reducing congestion in high-variability queues," European Journal of Operational Research, Elsevier, vol. 262(2), pages 602-619.
    2. Romero-Silva, Rodrigo & Shaaban, Sabry & Marsillac, Erika & Hurtado, Margarita, 2018. "Exploiting the characteristics of serial queues to reduce the mean and variance of flow time using combined priority rules," International Journal of Production Economics, Elsevier, vol. 196(C), pages 211-225.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morabito, Reinaldo & de Souza, Mauricio C. & Vazquez, Mariana, 2014. "Approximate decomposition methods for the analysis of multicommodity flow routing in generalized queuing networks," European Journal of Operational Research, Elsevier, vol. 232(3), pages 618-629.
    2. Wu, Kan & McGinnis, Leon, 2012. "Performance evaluation for general queueing networks in manufacturing systems: Characterizing the trade-off between queue time and utilization," European Journal of Operational Research, Elsevier, vol. 221(2), pages 328-339.
    3. Papadopoulos, H. T. & Heavey, C., 1996. "Queueing theory in manufacturing systems analysis and design: A classification of models for production and transfer lines," European Journal of Operational Research, Elsevier, vol. 92(1), pages 1-27, July.
    4. Wu, Kan, 2014. "Taxonomy of batch queueing models in manufacturing systems," European Journal of Operational Research, Elsevier, vol. 237(1), pages 129-135.
    5. Hum, Sin-Hoon & Parlar, Mahmut & Zhou, Yun, 2018. "Measurement and optimization of responsiveness in supply chain networks with queueing structures," European Journal of Operational Research, Elsevier, vol. 264(1), pages 106-118.
    6. Kurz, Julian, 2016. "Capacity planning for a maintenance service provider with advanced information," European Journal of Operational Research, Elsevier, vol. 251(2), pages 466-477.
    7. Sunkyo Kim, 2011. "Modeling Cross Correlation in Three-Moment Four-Parameter Decomposition Approximation of Queueing Networks," Operations Research, INFORMS, vol. 59(2), pages 480-497, April.
    8. Bitran, Gabriel R. & Morabito, Reinaldo., 1994. "Open queueing networks : optimization and performance evaluation models for discrete manufacturing systems," Working papers 3743-94., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    9. Ward Whitt & Wei You, 2018. "Using Robust Queueing to Expose the Impact of Dependence in Single-Server Queues," Operations Research, INFORMS, vol. 66(1), pages 184-199, January.
    10. Sunkyo Kim, 2005. "Approximation of multiclass queueing networks with highly variable arrivals under deterministic routing," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(5), pages 399-408, August.
    11. Subba Rao, S. & Gunasekaran, A. & Goyal, S. K. & Martikainen, T., 1998. "Waiting line model applications in manufacturing," International Journal of Production Economics, Elsevier, vol. 54(1), pages 1-28, January.
    12. Kim, Sunkyo, 2004. "The heavy-traffic bottleneck phenomenon under splitting and superposition," European Journal of Operational Research, Elsevier, vol. 157(3), pages 736-745, September.
    13. Kurt M. Bretthauer, 2000. "Optimal service and arrival rates in Jackson queueing networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(1), pages 1-17, February.
    14. Rabta, Boualem, 2013. "A hybrid method for performance analysis of G/G/m queueing networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 89(C), pages 38-49.
    15. Van Nyen, Pieter L. M. & Van Ooijen, Henny P. G. & Bertrand, J.W.M.J. Will M., 2004. "Simulation results on the performance of Albin and Whitt's estimation method for waiting times in integrated production-inventory systems," International Journal of Production Economics, Elsevier, vol. 90(2), pages 237-249, July.
    16. Chaithanya Bandi & Dimitris Bertsimas & Nataly Youssef, 2015. "Robust Queueing Theory," Operations Research, INFORMS, vol. 63(3), pages 676-700, June.
    17. Maddah, Bacel & Nasr, Walid W. & Charanek, Ali, 2017. "A multi-station system for reducing congestion in high-variability queues," European Journal of Operational Research, Elsevier, vol. 262(2), pages 602-619.
    18. Tanaka, Masahiro & Yanagisawa, Daichi & Nishinari, Katsuhiro, 2018. "Exclusive queueing model including the choice of service windows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1481-1492.
    19. Glynn, Peter W. & Wang, Rob J., 2023. "A heavy-traffic perspective on departure process variability," Stochastic Processes and their Applications, Elsevier, vol. 166(C).
    20. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:247:y:2015:i:1:p:245-258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.