IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v56y2008i4p1034-1038.html
   My bibliography  Save this article

Analysis of Perishable-Inventory Systems with Censored Demand Data

Author

Listed:
  • Xiangwen Lu

    (Cisco Systems, San Jose, California 95134)

  • Jing-Sheng Song

    (Fuqua School of Business, Duke University, Durham, North Carolina 27708)

  • Kaijie Zhu

    (Department of IELM, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong)

Abstract

We consider a multiperiod inventory system of a perishable product with unobservable lost sales. Demand distribution parameters are unknown and are updated periodically using the Bayesian approach based on the censored historical sales data. We develop an explicit expression of the first-order condition for optimality that demonstrates the key trade-off of the problem. The result generalizes partial characterizations of this trade-off in the literature. It shows that the myopic solution is a lower bound on the optimal inventory level. It also enables us to quantify the expected marginal value of information.

Suggested Citation

  • Xiangwen Lu & Jing-Sheng Song & Kaijie Zhu, 2008. "Analysis of Perishable-Inventory Systems with Censored Demand Data," Operations Research, INFORMS, vol. 56(4), pages 1034-1038, August.
  • Handle: RePEc:inm:oropre:v:56:y:2008:i:4:p:1034-1038
    DOI: 10.1287/opre.1080.0553
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1080.0553
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1080.0553?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Katy S. Azoury, 1985. "Bayes Solution to Dynamic Inventory Models Under Unknown Demand Distribution," Management Science, INFORMS, vol. 31(9), pages 1150-1160, September.
    2. Steven Nahmias, 1994. "Demand estimation in lost sales inventory systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(6), pages 739-757, October.
    3. David J. Braden & Marshall Freimer, 1991. "Informational Dynamics of Censored Observations," Management Science, INFORMS, vol. 37(11), pages 1390-1404, November.
    4. Martin A. Lariviere & Evan L. Porteus, 1999. "Stalking Information: Bayesian Inventory Management with Unobserved Lost Sales," Management Science, INFORMS, vol. 45(3), pages 346-363, March.
    5. Xiaomei Ding & Martin L. Puterman & Arnab Bisi, 2002. "The Censored Newsvendor and the Optimal Acquisition of Information," Operations Research, INFORMS, vol. 50(3), pages 517-527, June.
    6. Giora Harpaz & Wayne Y. Lee & Robert L. Winkler, 1982. "Learning, Experimentation, and the Optimal Output Decisions of a Competitive Firm," Management Science, INFORMS, vol. 28(6), pages 589-603, June.
    7. Narendra Agrawal & Stephen A. Smith, 1996. "Estimating negative binomial demand for retail inventory management with unobservable lost sales," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(6), pages 839-861, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Jian & Zhang, Juliang & Hua, Guowei, 2016. "Multi-period inventory games with information update," International Journal of Production Economics, Elsevier, vol. 174(C), pages 119-127.
    2. Deligiannis, Michalis & Liberopoulos, George & Pandelis, Dimitrios G., 2023. "Managing supply chain risks with dual sourcing: Bayesian learning of censored supply capacity," International Journal of Production Economics, Elsevier, vol. 265(C).
    3. Omar Besbes & Alp Muharremoglu, 2013. "On Implications of Demand Censoring in the Newsvendor Problem," Management Science, INFORMS, vol. 59(6), pages 1407-1424, June.
    4. Agrawal, Narendra & Smith, Stephen A., 2013. "Optimal inventory management for a retail chain with diverse store demands," European Journal of Operational Research, Elsevier, vol. 225(3), pages 393-403.
    5. Gen Sakoda & Hideki Takayasu & Misako Takayasu, 2019. "Data Science Solutions for Retail Strategy to Reduce Waste Keeping High Profit," Sustainability, MDPI, vol. 11(13), pages 1-30, June.
    6. Alain Bensoussan & Metin Çakanyıldırım & Suresh P. Sethi, 2009. "Technical Note---A Note on “The Censored Newsvendor and the Optimal Acquisition of Information”," Operations Research, INFORMS, vol. 57(3), pages 791-794, June.
    7. Sachs, Anna-Lena & Minner, Stefan, 2014. "The data-driven newsvendor with censored demand observations," International Journal of Production Economics, Elsevier, vol. 149(C), pages 28-36.
    8. Tianhu Deng & Zuo-Jun Max Shen & J. George Shanthikumar, 2014. "Statistical Learning of Service-Dependent Demand in a Multiperiod Newsvendor Setting," Operations Research, INFORMS, vol. 62(5), pages 1064-1076, October.
    9. Jiri Chod & Mihalis G. Markakis & Nikolaos Trichakis, 2021. "On the Learning Benefits of Resource Flexibility," Management Science, INFORMS, vol. 67(10), pages 6513-6528, October.
    10. Tinglong Dai & Kinshuk Jerath, 2019. "Salesforce Contracting Under Uncertain Demand and Supply: Double Moral Hazard and Optimality of Smooth Contracts," Marketing Science, INFORMS, vol. 38(5), pages 852-870, September.
    11. Pahl, Julia & Voß, Stefan, 2014. "Integrating deterioration and lifetime constraints in production and supply chain planning: A survey," European Journal of Operational Research, Elsevier, vol. 238(3), pages 654-674.
    12. Hao Yuan & Qi Luo & Cong Shi, 2021. "Marrying Stochastic Gradient Descent with Bandits: Learning Algorithms for Inventory Systems with Fixed Costs," Management Science, INFORMS, vol. 67(10), pages 6089-6115, October.
    13. Woonghee Tim Huh & Retsef Levi & Paat Rusmevichientong & James B. Orlin, 2011. "Adaptive Data-Driven Inventory Control with Censored Demand Based on Kaplan-Meier Estimator," Operations Research, INFORMS, vol. 59(4), pages 929-941, August.
    14. Mila Nambiar & David Simchi‐Levi & He Wang, 2021. "Dynamic Inventory Allocation with Demand Learning for Seasonal Goods," Production and Operations Management, Production and Operations Management Society, vol. 30(3), pages 750-765, March.
    15. Aditya Jain & Nils Rudi & Tong Wang, 2015. "Demand Estimation and Ordering Under Censoring: Stock-Out Timing Is (Almost) All You Need," Operations Research, INFORMS, vol. 63(1), pages 134-150, February.
    16. Wang, Haifeng & Chen, Bocheng & Yan, Houmin, 2010. "Optimal inventory decisions in a multiperiod newsvendor problem with partially observed Markovian supply capacities," European Journal of Operational Research, Elsevier, vol. 202(2), pages 502-517, April.
    17. Li Chen & Adam J.Mersereau & Zhe (Frank) Wang, 2017. "Optimal Merchandise Testing with Limited Inventory," Operations Research, INFORMS, vol. 65(4), pages 968-991, August.
    18. Arnab Bisi & Maqbool Dada & Surya Tokdar, 2011. "A Censored-Data Multiperiod Inventory Problem with Newsvendor Demand Distributions," Manufacturing & Service Operations Management, INFORMS, vol. 13(4), pages 525-533, October.
    19. Li Chen, 2010. "Bounds and Heuristics for Optimal Bayesian Inventory Control with Unobserved Lost Sales," Operations Research, INFORMS, vol. 58(2), pages 396-413, April.
    20. Woonghee Tim Huh & Paat Rusmevichientong, 2009. "A Nonparametric Asymptotic Analysis of Inventory Planning with Censored Demand," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 103-123, February.
    21. Rong Li & Jing‐Sheng Jeannette Song & Shuxiao Sun & Xiaona Zheng, 2022. "Fight inventory shrinkage: Simultaneous learning of inventory level and shrinkage rate," Production and Operations Management, Production and Operations Management Society, vol. 31(6), pages 2477-2491, June.
    22. Li, Tianyun & Fang, Weiguo & Baykal-Gürsoy, Melike, 2021. "Two-stage inventory management with financing under demand updates," International Journal of Production Economics, Elsevier, vol. 232(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arnab Bisi & Maqbool Dada, 2007. "Dynamic learning, pricing, and ordering by a censored newsvendor," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(4), pages 448-461, June.
    2. Woonghee Tim Huh & Paat Rusmevichientong, 2009. "A Nonparametric Asymptotic Analysis of Inventory Planning with Censored Demand," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 103-123, February.
    3. Adam J. Mersereau, 2015. "Demand Estimation from Censored Observations with Inventory Record Inaccuracy," Manufacturing & Service Operations Management, INFORMS, vol. 17(3), pages 335-349, July.
    4. Nicholas C. Petruzzi & Maqbool Dada, 2002. "Dynamic pricing and inventory control with learning," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(3), pages 303-325, April.
    5. Li Chen, 2010. "Bounds and Heuristics for Optimal Bayesian Inventory Control with Unobserved Lost Sales," Operations Research, INFORMS, vol. 58(2), pages 396-413, April.
    6. Xiaomei Ding & Martin L. Puterman & Arnab Bisi, 2002. "The Censored Newsvendor and the Optimal Acquisition of Information," Operations Research, INFORMS, vol. 50(3), pages 517-527, June.
    7. Arnab Bisi & Maqbool Dada & Surya Tokdar, 2011. "A Censored-Data Multiperiod Inventory Problem with Newsvendor Demand Distributions," Manufacturing & Service Operations Management, INFORMS, vol. 13(4), pages 525-533, October.
    8. Gen Sakoda & Hideki Takayasu & Misako Takayasu, 2019. "Data Science Solutions for Retail Strategy to Reduce Waste Keeping High Profit," Sustainability, MDPI, vol. 11(13), pages 1-30, June.
    9. Alain Bensoussan & Pengfei Guo, 2015. "Technical Note—Managing Nonperishable Inventories with Learning About Demand Arrival Rate Through Stockout Times," Operations Research, INFORMS, vol. 63(3), pages 602-609, June.
    10. Aditya Jain & Nils Rudi & Tong Wang, 2015. "Demand Estimation and Ordering Under Censoring: Stock-Out Timing Is (Almost) All You Need," Operations Research, INFORMS, vol. 63(1), pages 134-150, February.
    11. Gel, Esma S. & Salman, F. Sibel, 2022. "Dynamic ordering decisions with approximate learning of supply yield uncertainty," International Journal of Production Economics, Elsevier, vol. 243(C).
    12. Li Chen & Erica L. Plambeck, 2008. "Dynamic Inventory Management with Learning About the Demand Distribution and Substitution Probability," Manufacturing & Service Operations Management, INFORMS, vol. 10(2), pages 236-256, May.
    13. Deligiannis, Michalis & Liberopoulos, George & Pandelis, Dimitrios G., 2023. "Managing supply chain risks with dual sourcing: Bayesian learning of censored supply capacity," International Journal of Production Economics, Elsevier, vol. 265(C).
    14. Zhang, Jian & Zhang, Juliang & Hua, Guowei, 2016. "Multi-period inventory games with information update," International Journal of Production Economics, Elsevier, vol. 174(C), pages 119-127.
    15. Martin A. Lariviere & Evan L. Porteus, 1999. "Stalking Information: Bayesian Inventory Management with Unobserved Lost Sales," Management Science, INFORMS, vol. 45(3), pages 346-363, March.
    16. Katy S. Azoury & Julia Miyaoka, 2009. "Optimal Policies and Approximations for a Bayesian Linear Regression Inventory Model," Management Science, INFORMS, vol. 55(5), pages 813-826, May.
    17. Boutselis, Petros & McNaught, Ken, 2014. "Finite-Time Horizon Logistics Decision Making Problems: Consideration of a Wider Set of Factors," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Blecker, Thorsten & Kersten, Wolfgang & Ringle, Christian M. (ed.), Innovative Methods in Logistics and Supply Chain Management: Current Issues and Emerging Practices. Proceedings of the Hamburg International Conferenc, volume 19, pages 249-274, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    18. Li, Tianyun & Fang, Weiguo & Baykal-Gürsoy, Melike, 2021. "Two-stage inventory management with financing under demand updates," International Journal of Production Economics, Elsevier, vol. 232(C).
    19. Woonghee Tim Huh & Retsef Levi & Paat Rusmevichientong & James B. Orlin, 2011. "Adaptive Data-Driven Inventory Control with Censored Demand Based on Kaplan-Meier Estimator," Operations Research, INFORMS, vol. 59(4), pages 929-941, August.
    20. Li Chen & Adam J.Mersereau & Zhe (Frank) Wang, 2017. "Optimal Merchandise Testing with Limited Inventory," Operations Research, INFORMS, vol. 65(4), pages 968-991, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:56:y:2008:i:4:p:1034-1038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.