IDEAS home Printed from https://ideas.repec.org/a/inm/ormsom/v13y2011i4p525-533.html
   My bibliography  Save this article

A Censored-Data Multiperiod Inventory Problem with Newsvendor Demand Distributions

Author

Listed:
  • Arnab Bisi

    (Krannert School of Management, Purdue University, West Lafayette, Indiana 47907)

  • Maqbool Dada

    (Johns Hopkins Carey Business School, Baltimore, Maryland 21202)

  • Surya Tokdar

    (Department of Statistical Science, Duke University, Durham, North Carolina 27708)

Abstract

We study the stochastic multiperiod inventory problem in which demand in excess of available inventory is lost and unobserved so that demand data are censored. A Bayesian scheme is employed to dynamically update the demand distribution for the problem with storable or perishable inventory and with exogenous or endogenous price. We show that the Weibull is the only newsvendor distribution for which the optimal solution can be expressed in scalable form. Moreover, for Weibull demand the cost function is not convex in general. Nevertheless, in all but the storable case, sufficient structure can be discerned so that the optimal solution can be easily computed. Specifically, for the perishable inventory case, the optimal policy can be found by solving simple recursions, whereas the perishable case with pricing requires solutions to more complex one-step look-ahead recursions. Interestingly, for the special case of exponential demand the cost function is convex, so that for the storable inventory case, the optimal policy can be found using simple one-step look-ahead recursions whereas for the perishable case the optimal policy can be expressed by exact closed-form formulas.

Suggested Citation

  • Arnab Bisi & Maqbool Dada & Surya Tokdar, 2011. "A Censored-Data Multiperiod Inventory Problem with Newsvendor Demand Distributions," Manufacturing & Service Operations Management, INFORMS, vol. 13(4), pages 525-533, October.
  • Handle: RePEc:inm:ormsom:v:13:y:2011:i:4:p:525-533
    DOI: 10.1287/msom.1110.0340
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/msom.1110.0340
    Download Restriction: no

    File URL: https://libkey.io/10.1287/msom.1110.0340?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David J. Braden & Marshall Freimer, 1991. "Informational Dynamics of Censored Observations," Management Science, INFORMS, vol. 37(11), pages 1390-1404, November.
    2. Xiangwen Lu & Jing-Sheng Song & Kaijie Zhu, 2008. "Analysis of Perishable-Inventory Systems with Censored Demand Data," Operations Research, INFORMS, vol. 56(4), pages 1034-1038, August.
    3. Martin A. Lariviere & Evan L. Porteus, 1999. "Stalking Information: Bayesian Inventory Management with Unobserved Lost Sales," Management Science, INFORMS, vol. 45(3), pages 346-363, March.
    4. Nicholas C. Petruzzi & Maqbool Dada, 1999. "Pricing and the Newsvendor Problem: A Review with Extensions," Operations Research, INFORMS, vol. 47(2), pages 183-194, April.
    5. Alain Bensoussan & Metin Çakanyıldırım & Suresh P. Sethi, 2007. "A Multiperiod Newsvendor Problem with Partially Observed Demand," Mathematics of Operations Research, INFORMS, vol. 32(2), pages 322-344, May.
    6. Arthur F. Veinott, Jr., 1965. "Optimal Policy for a Multi-Product, Dynamic, Nonstationary Inventory Problem," Management Science, INFORMS, vol. 12(3), pages 206-222, November.
    7. Li Chen & Erica L. Plambeck, 2008. "Dynamic Inventory Management with Learning About the Demand Distribution and Substitution Probability," Manufacturing & Service Operations Management, INFORMS, vol. 10(2), pages 236-256, May.
    8. Katy S. Azoury, 1985. "Bayes Solution to Dynamic Inventory Models Under Unknown Demand Distribution," Management Science, INFORMS, vol. 31(9), pages 1150-1160, September.
    9. Nicholas C. Petruzzi & Maqbool Dada, 2001. "Information and Inventory Recourse for a Two-Market, Price-Setting Retailer," Manufacturing & Service Operations Management, INFORMS, vol. 3(3), pages 242-263, October.
    10. Xiaomei Ding & Martin L. Puterman & Arnab Bisi, 2002. "The Censored Newsvendor and the Optimal Acquisition of Information," Operations Research, INFORMS, vol. 50(3), pages 517-527, June.
    11. Li Chen, 2010. "Bounds and Heuristics for Optimal Bayesian Inventory Control with Unobserved Lost Sales," Operations Research, INFORMS, vol. 58(2), pages 396-413, April.
    12. Giora Harpaz & Wayne Y. Lee & Robert L. Winkler, 1982. "Learning, Experimentation, and the Optimal Output Decisions of a Competitive Firm," Management Science, INFORMS, vol. 28(6), pages 589-603, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen Chen & Ying He, 2022. "Dynamic pricing and inventory control with delivery flexibility," Annals of Operations Research, Springer, vol. 317(2), pages 481-508, October.
    2. Tianhu Deng & Zuo-Jun Max Shen & J. George Shanthikumar, 2014. "Statistical Learning of Service-Dependent Demand in a Multiperiod Newsvendor Setting," Operations Research, INFORMS, vol. 62(5), pages 1064-1076, October.
    3. Adam J. Mersereau, 2015. "Demand Estimation from Censored Observations with Inventory Record Inaccuracy," Manufacturing & Service Operations Management, INFORMS, vol. 17(3), pages 335-349, July.
    4. Zhang, Jian & Zhang, Juliang & Hua, Guowei, 2016. "Multi-period inventory games with information update," International Journal of Production Economics, Elsevier, vol. 174(C), pages 119-127.
    5. Aditya Jain & Nils Rudi & Tong Wang, 2015. "Demand Estimation and Ordering Under Censoring: Stock-Out Timing Is (Almost) All You Need," Operations Research, INFORMS, vol. 63(1), pages 134-150, February.
    6. Li Chen & Adam J.Mersereau & Zhe (Frank) Wang, 2017. "Optimal Merchandise Testing with Limited Inventory," Operations Research, INFORMS, vol. 65(4), pages 968-991, August.
    7. Bharadwaj Kadiyala & Özalp Özer & Alain Bensoussan, 2020. "A Mechanism Design Approach to Vendor Managed Inventory," Management Science, INFORMS, vol. 66(6), pages 2628-2652, June.
    8. Deligiannis, Michalis & Liberopoulos, George & Pandelis, Dimitrios G., 2023. "Managing supply chain risks with dual sourcing: Bayesian learning of censored supply capacity," International Journal of Production Economics, Elsevier, vol. 265(C).
    9. Zhang, Guoqing & Shi, Jianmai & Chaudhry, Sohail S. & Li, Xindan, 2019. "Multi-period multi-product acquisition planning with uncertain demands and supplier quantity discounts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 132(C), pages 117-140.
    10. Jiri Chod & Mihalis G. Markakis & Nikolaos Trichakis, 2021. "On the Learning Benefits of Resource Flexibility," Management Science, INFORMS, vol. 67(10), pages 6513-6528, October.
    11. Bansal, Vishal & Bisi, Arnab & Roy, Debjit & Venkateshan, Prahalad, 2024. "Integrated inventory replenishment and online demand allocation decisions for an omnichannel retailer with ship-from-store strategy," European Journal of Operational Research, Elsevier, vol. 316(3), pages 1085-1100.
    12. Rong Li & Jing‐Sheng Jeannette Song & Shuxiao Sun & Xiaona Zheng, 2022. "Fight inventory shrinkage: Simultaneous learning of inventory level and shrinkage rate," Production and Operations Management, Production and Operations Management Society, vol. 31(6), pages 2477-2491, June.
    13. Alain Bensoussan & Pengfei Guo, 2015. "Technical Note—Managing Nonperishable Inventories with Learning About Demand Arrival Rate Through Stockout Times," Operations Research, INFORMS, vol. 63(3), pages 602-609, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Woonghee Tim Huh & Paat Rusmevichientong, 2009. "A Nonparametric Asymptotic Analysis of Inventory Planning with Censored Demand," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 103-123, February.
    2. Li Chen & Adam J.Mersereau & Zhe (Frank) Wang, 2017. "Optimal Merchandise Testing with Limited Inventory," Operations Research, INFORMS, vol. 65(4), pages 968-991, August.
    3. Mila Nambiar & David Simchi‐Levi & He Wang, 2021. "Dynamic Inventory Allocation with Demand Learning for Seasonal Goods," Production and Operations Management, Production and Operations Management Society, vol. 30(3), pages 750-765, March.
    4. Deligiannis, Michalis & Liberopoulos, George & Pandelis, Dimitrios G., 2023. "Managing supply chain risks with dual sourcing: Bayesian learning of censored supply capacity," International Journal of Production Economics, Elsevier, vol. 265(C).
    5. Li, Tianyun & Fang, Weiguo & Baykal-Gürsoy, Melike, 2021. "Two-stage inventory management with financing under demand updates," International Journal of Production Economics, Elsevier, vol. 232(C).
    6. Omar Besbes & Alp Muharremoglu, 2013. "On Implications of Demand Censoring in the Newsvendor Problem," Management Science, INFORMS, vol. 59(6), pages 1407-1424, June.
    7. Li Chen, 2010. "Bounds and Heuristics for Optimal Bayesian Inventory Control with Unobserved Lost Sales," Operations Research, INFORMS, vol. 58(2), pages 396-413, April.
    8. Rong Li & Jing‐Sheng Jeannette Song & Shuxiao Sun & Xiaona Zheng, 2022. "Fight inventory shrinkage: Simultaneous learning of inventory level and shrinkage rate," Production and Operations Management, Production and Operations Management Society, vol. 31(6), pages 2477-2491, June.
    9. Zhang, Jian & Zhang, Juliang & Hua, Guowei, 2016. "Multi-period inventory games with information update," International Journal of Production Economics, Elsevier, vol. 174(C), pages 119-127.
    10. Adam J. Mersereau, 2015. "Demand Estimation from Censored Observations with Inventory Record Inaccuracy," Manufacturing & Service Operations Management, INFORMS, vol. 17(3), pages 335-349, July.
    11. Katy S. Azoury & Julia Miyaoka, 2009. "Optimal Policies and Approximations for a Bayesian Linear Regression Inventory Model," Management Science, INFORMS, vol. 55(5), pages 813-826, May.
    12. Gen Sakoda & Hideki Takayasu & Misako Takayasu, 2019. "Data Science Solutions for Retail Strategy to Reduce Waste Keeping High Profit," Sustainability, MDPI, vol. 11(13), pages 1-30, June.
    13. Alain Bensoussan & Pengfei Guo, 2015. "Technical Note—Managing Nonperishable Inventories with Learning About Demand Arrival Rate Through Stockout Times," Operations Research, INFORMS, vol. 63(3), pages 602-609, June.
    14. Arnab Bisi & Maqbool Dada, 2007. "Dynamic learning, pricing, and ordering by a censored newsvendor," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(4), pages 448-461, June.
    15. Aditya Jain & Nils Rudi & Tong Wang, 2015. "Demand Estimation and Ordering Under Censoring: Stock-Out Timing Is (Almost) All You Need," Operations Research, INFORMS, vol. 63(1), pages 134-150, February.
    16. Xiangwen Lu & Jing-Sheng Song & Kaijie Zhu, 2008. "Analysis of Perishable-Inventory Systems with Censored Demand Data," Operations Research, INFORMS, vol. 56(4), pages 1034-1038, August.
    17. Bharadwaj Kadiyala & Özalp Özer & Alain Bensoussan, 2020. "A Mechanism Design Approach to Vendor Managed Inventory," Management Science, INFORMS, vol. 66(6), pages 2628-2652, June.
    18. Jiri Chod & Mihalis G. Markakis & Nikolaos Trichakis, 2021. "On the Learning Benefits of Resource Flexibility," Management Science, INFORMS, vol. 67(10), pages 6513-6528, October.
    19. Satya S. Malladi & Alan L. Erera & Chelsea C. White, 2023. "Inventory control with modulated demand and a partially observed modulation process," Annals of Operations Research, Springer, vol. 321(1), pages 343-369, February.
    20. Boutselis, Petros & McNaught, Ken, 2014. "Finite-Time Horizon Logistics Decision Making Problems: Consideration of a Wider Set of Factors," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Blecker, Thorsten & Kersten, Wolfgang & Ringle, Christian M. (ed.), Innovative Methods in Logistics and Supply Chain Management: Current Issues and Emerging Practices. Proceedings of the Hamburg International Conferenc, volume 19, pages 249-274, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormsom:v:13:y:2011:i:4:p:525-533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.