IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v55y2007i2p351-366.html
   My bibliography  Save this article

Coupling Stochastic and Deterministic Local Search in Examination Timetabling

Author

Listed:
  • Massimiliano Caramia

    (Dipartimento di Ingegneria dell’Impresa, University of Rome “Tor Vergata,” Via del Politecnico, 1, 00133, Rome, Italy)

  • Paolo Dell’Olmo

    (Dipartimento di Statistica, Probabilità e Statistiche Applicate, University of Rome “La Sapienza,” Piazzale Aldo Moro, 5, 00185 Rome, Italy)

Abstract

In this paper, we propose a novel optimization algorithm for examination timetabling. It works by alternating two phases; one based on a stochastic local search and the other on a deterministic local search. The stochastic phase is fundamentally based on biased random sampling that iteratively constructs schedules according to a matrix whose entries are the probability with which exams can be assigned to time slots. The deterministic phase, instead, consists of assigning (according to a given ordering) each exam sequentially to the time slot that causes the lowest increase in the schedule penalty. After a schedule is constructed, swap operations are executed to improve performance. These two phases are coupled and made closely interactive by tunnelling information on what has happened during one phase to the successive ones. Moreover, the length of a phase and the parameter framework to be used in a new phase are automatically determined by a record of the process. We tested the proposed technique on known benchmarks, and a comparison with 17 algorithms drawn from the state of the art appears to show that our algorithm is able to improve best-known results. In particular, in reference to uncapacitated problems, i.e., the ones without room constraints, our algorithm bested the state of the art in 70% to 90% of the tested instances, while in capacitated problems with overnight conflicts (second-order conflicts), it was superior to all the other algorithms.

Suggested Citation

  • Massimiliano Caramia & Paolo Dell’Olmo, 2007. "Coupling Stochastic and Deterministic Local Search in Examination Timetabling," Operations Research, INFORMS, vol. 55(2), pages 351-366, April.
  • Handle: RePEc:inm:oropre:v:55:y:2007:i:2:p:351-366
    DOI: 10.1287/opre.1060.0354
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1060.0354
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1060.0354?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Burke, Edmund Kieran & Petrovic, Sanja, 2002. "Recent research directions in automated timetabling," European Journal of Operational Research, Elsevier, vol. 140(2), pages 266-280, July.
    2. K A Dowsland & J M Thompson, 2005. "Ant colony optimization for the examination scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(4), pages 426-438, April.
    3. E.K. Burke & J.P. Newall, 2004. "Solving Examination Timetabling Problems through Adaption of Heuristic Orderings," Annals of Operations Research, Springer, vol. 129(1), pages 107-134, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. T. Godwin, 2022. "Obtaining quality business school examination timetable under heterogeneous elective selections through surrogacy," OPSEARCH, Springer;Operational Research Society of India, vol. 59(3), pages 1055-1093, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johnes, Jill, 2015. "Operational Research in education," European Journal of Operational Research, Elsevier, vol. 243(3), pages 683-696.
    2. Edmund Burke & Graham Kendall & Mustafa Mısır & Ender Özcan, 2012. "Monte Carlo hyper-heuristics for examination timetabling," Annals of Operations Research, Springer, vol. 196(1), pages 73-90, July.
    3. Qu, Rong & Burke, Edmund K. & McCollum, Barry, 2009. "Adaptive automated construction of hybrid heuristics for exam timetabling and graph colouring problems," European Journal of Operational Research, Elsevier, vol. 198(2), pages 392-404, October.
    4. Christine Mumford, 2010. "A multiobjective framework for heavily constrained examination timetabling problems," Annals of Operations Research, Springer, vol. 180(1), pages 3-31, November.
    5. R Qu & E K Burke, 2009. "Hybridizations within a graph-based hyper-heuristic framework for university timetabling problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(9), pages 1273-1285, September.
    6. Thepphakorn, Thatchai & Pongcharoen, Pupong & Hicks, Chris, 2014. "An ant colony based timetabling tool," International Journal of Production Economics, Elsevier, vol. 149(C), pages 131-144.
    7. G N Beligiannis & C Moschopoulos & S D Likothanassis, 2009. "A genetic algorithm approach to school timetabling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 23-42, January.
    8. Burke, E.K. & Eckersley, A.J. & McCollum, B. & Petrovic, S. & Qu, R., 2010. "Hybrid variable neighbourhood approaches to university exam timetabling," European Journal of Operational Research, Elsevier, vol. 206(1), pages 46-53, October.
    9. Barry McCollum & Paul McMullan & Andrew Parkes & Edmund Burke & Rong Qu, 2012. "A new model for automated examination timetabling," Annals of Operations Research, Springer, vol. 194(1), pages 291-315, April.
    10. Pillay, N. & Banzhaf, W., 2009. "A study of heuristic combinations for hyper-heuristic systems for the uncapacitated examination timetabling problem," European Journal of Operational Research, Elsevier, vol. 197(2), pages 482-491, September.
    11. Martin Geiger, 2012. "Applying the threshold accepting metaheuristic to curriculum based course timetabling," Annals of Operations Research, Springer, vol. 194(1), pages 189-202, April.
    12. Christos Gogos & Panayiotis Alefragis & Efthymios Housos, 2012. "An improved multi-staged algorithmic process for the solution of the examination timetabling problem," Annals of Operations Research, Springer, vol. 194(1), pages 203-221, April.
    13. Zhang, Defu & Liu, Yongkai & M'Hallah, Rym & Leung, Stephen C.H., 2010. "A simulated annealing with a new neighborhood structure based algorithm for high school timetabling problems," European Journal of Operational Research, Elsevier, vol. 203(3), pages 550-558, June.
    14. Turabieh, Hamza & Abdullah, Salwani, 2011. "An integrated hybrid approach to the examination timetabling problem," Omega, Elsevier, vol. 39(6), pages 598-607, December.
    15. Edmund K. Burke & Yuri Bykov, 2016. "An Adaptive Flex-Deluge Approach to University Exam Timetabling," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 781-794, November.
    16. Esmaeilbeigi, Rasul & Mak-Hau, Vicky & Yearwood, John & Nguyen, Vivian, 2022. "The multiphase course timetabling problem," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1098-1119.
    17. Andrea Bettinelli & Valentina Cacchiani & Roberto Roberti & Paolo Toth, 2015. "An overview of curriculum-based course timetabling," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 313-349, July.
    18. Song, Kwonsik & Kim, Sooyoung & Park, Moonseo & Lee, Hyun-Soo, 2017. "Energy efficiency-based course timetabling for university buildings," Energy, Elsevier, vol. 139(C), pages 394-405.
    19. R. Alan Bowman, 2021. "Developing Optimal Student Plans of Study," Interfaces, INFORMS, vol. 51(6), pages 409-421, November.
    20. Wen, Charlie & Eksioglu, Sandra Duni & Greenwood, Allen & Zhang, Shu, 2010. "Crane scheduling in a shipbuilding environment," International Journal of Production Economics, Elsevier, vol. 124(1), pages 40-50, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:55:y:2007:i:2:p:351-366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.