IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v124y2010i1p40-50.html
   My bibliography  Save this article

Crane scheduling in a shipbuilding environment

Author

Listed:
  • Wen, Charlie
  • Eksioglu, Sandra Duni
  • Greenwood, Allen
  • Zhang, Shu

Abstract

This paper describes exact and heuristic approaches for scheduling multiple cranes that service a shipyard that produces multiple ships concurrently. Cranes transport a variety of materials over a shared network of tracks; therefore, inter-crane interference is a major factor affecting makespan and crane utilization. The exact approach models the problem as a multi-commodity flow problem with side constraints on a network. The corresponding integer programming formulation is solved using CPLEX. The heuristics proposed decompose the problem in two sub-problems: a scheduling problem that determines the order in which jobs should be performed, and an assignment problem that assigns cranes to jobs. Computational results show that using the Priority/ACO (ant colony optimization) heuristic gives high quality solutions.

Suggested Citation

  • Wen, Charlie & Eksioglu, Sandra Duni & Greenwood, Allen & Zhang, Shu, 2010. "Crane scheduling in a shipbuilding environment," International Journal of Production Economics, Elsevier, vol. 124(1), pages 40-50, March.
  • Handle: RePEc:eee:proeco:v:124:y:2010:i:1:p:40-50
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(09)00360-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hirofumi Matsuo & Jen S. Shang & Robert S. Sullivan, 1991. "A Crane Scheduling Problem in a Computer-Integrated Manufacturing Environment," Management Science, INFORMS, vol. 37(5), pages 587-606, May.
    2. Ng, W. C., 2005. "Crane scheduling in container yards with inter-crane interference," European Journal of Operational Research, Elsevier, vol. 164(1), pages 64-78, July.
    3. K A Dowsland & J M Thompson, 2005. "Ant colony optimization for the examination scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(4), pages 426-438, April.
    4. T'kindt, Vincent & Monmarche, Nicolas & Tercinet, Fabrice & Laugt, Daniel, 2002. "An Ant Colony Optimization algorithm to solve a 2-machine bicriteria flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 142(2), pages 250-257, October.
    5. Rajendran, Chandrasekharan & Ziegler, Hans, 2004. "Ant-colony algorithms for permutation flowshop scheduling to minimize makespan/total flowtime of jobs," European Journal of Operational Research, Elsevier, vol. 155(2), pages 426-438, June.
    6. Kim, Kap Hwan & Park, Young-Man, 2004. "A crane scheduling method for port container terminals," European Journal of Operational Research, Elsevier, vol. 156(3), pages 752-768, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xiaoju & Zeng, Qingcheng & Yang, Zhongzhen, 2016. "Modeling the mixed storage strategy for quay crane double cycling in container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 171-187.
    2. Yu-Hsin Chen, Gary, 2013. "A new data structure of solution representation in hybrid ant colony optimization for large dynamic facility layout problems," International Journal of Production Economics, Elsevier, vol. 142(2), pages 362-371.
    3. Kaveshgar, Narges & Huynh, Nathan, 2015. "Integrated quay crane and yard truck scheduling for unloading inbound containers," International Journal of Production Economics, Elsevier, vol. 159(C), pages 168-177.
    4. Lee, Byung Kwon & Kim, Kap Hwan, 2010. "Comparison and evaluation of various cycle-time models for yard cranes in container terminals," International Journal of Production Economics, Elsevier, vol. 126(2), pages 350-360, August.
    5. Li, Wenkai & Goh, Mark & Wu, Yong & Petering, M.E.H. & de Souza, R. & Wu, Y.C., 2012. "A continuous time model for multiple yard crane scheduling with last minute job arrivals," International Journal of Production Economics, Elsevier, vol. 136(2), pages 332-343.
    6. Boysen, Nils & Briskorn, Dirk & Meisel, Frank, 2017. "A generalized classification scheme for crane scheduling with interference," European Journal of Operational Research, Elsevier, vol. 258(1), pages 343-357.
    7. Zhang, Xiaoju & Zeng, Qingcheng & Sheu, Jiuh-Biing, 2019. "Modeling the productivity and stability of a terminal operation system with quay crane double cycling," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 181-197.
    8. Batur, G. Didem & Karasan, Oya Ekin & Akturk, M. Selim, 2012. "Multiple part-type scheduling in flexible robotic cells," International Journal of Production Economics, Elsevier, vol. 135(2), pages 726-740.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sündüz Dağ, 2013. "An Application On Flowshop Scheduling," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 1(1), pages 47-56, December.
    2. Xin Jia Jiang & Yanhua Xu & Chenhao Zhou & Ek Peng Chew & Loo Hay Lee, 2018. "Frame Trolley Dispatching Algorithm for the Frame Bridge Based Automated Container Terminal," Transportation Science, INFORMS, vol. 52(3), pages 722-737, June.
    3. Boysen, Nils & Briskorn, Dirk & Meisel, Frank, 2017. "A generalized classification scheme for crane scheduling with interference," European Journal of Operational Research, Elsevier, vol. 258(1), pages 343-357.
    4. Gharehgozli, A.H. & Roy, D. & de Koster, M.B.M., 2014. "Sea Container Terminals," ERIM Report Series Research in Management ERS-2014-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    5. Debjit Roy & René De Koster & René Bekker, 2020. "Modeling and Design of Container Terminal Operations," Operations Research, INFORMS, vol. 68(3), pages 686-715, May.
    6. Roy, D. & de Koster, M.B.M., 2014. "Modeling and Design of Container Terminal Operations," ERIM Report Series Research in Management ERS-2014-008-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    7. Chen, Lu & Langevin, André & Lu, Zhiqiang, 2013. "Integrated scheduling of crane handling and truck transportation in a maritime container terminal," European Journal of Operational Research, Elsevier, vol. 225(1), pages 142-152.
    8. Bo Liu & Ling Wang & Ying Liu & Shouyang Wang, 2011. "A unified framework for population-based metaheuristics," Annals of Operations Research, Springer, vol. 186(1), pages 231-262, June.
    9. Tang, Lixin & Zhao, Jiao & Liu, Jiyin, 2014. "Modeling and solution of the joint quay crane and truck scheduling problem," European Journal of Operational Research, Elsevier, vol. 236(3), pages 978-990.
    10. Luo, Hao & Du, Bing & Huang, George Q. & Chen, Huaping & Li, Xiaolin, 2013. "Hybrid flow shop scheduling considering machine electricity consumption cost," International Journal of Production Economics, Elsevier, vol. 146(2), pages 423-439.
    11. Gharehgozli, Amir Hossein & Vernooij, Floris Gerardus & Zaerpour, Nima, 2017. "A simulation study of the performance of twin automated stacking cranes at a seaport container terminal," European Journal of Operational Research, Elsevier, vol. 261(1), pages 108-128.
    12. Lin, B.M.T. & Lu, C.Y. & Shyu, S.J. & Tsai, C.Y., 2008. "Development of new features of ant colony optimization for flowshop scheduling," International Journal of Production Economics, Elsevier, vol. 112(2), pages 742-755, April.
    13. Zhang, An & Zhang, Wenshuai & Chen, Yong & Chen, Guangting & Chen, Xufeng, 2017. "Approximate the scheduling of quay cranes with non-crossing constraints," European Journal of Operational Research, Elsevier, vol. 258(3), pages 820-828.
    14. Zeng, Qingcheng & Yang, Zhongzhen & Lai, Luyuan, 2009. "Models and algorithms for multi-crane oriented scheduling method in container terminals," Transport Policy, Elsevier, vol. 16(5), pages 271-278, September.
    15. Li, Wenkai & Wu, Yong & Petering, M.E.H. & Goh, Mark & Souza, Robert de, 2009. "Discrete time model and algorithms for container yard crane scheduling," European Journal of Operational Research, Elsevier, vol. 198(1), pages 165-172, October.
    16. Roy, D. & de Koster, M.B.M., 2015. "Stochastic Modeling of Unloading and Loading Operations at a Container Terminal using Automated Lifting Vehicles," ERIM Report Series Research in Management ERS-2015-005-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    17. Ali Gharaei & Fariborz Jolai, 2021. "A Pareto approach for the multi-factory supply chain scheduling and distribution problem," Operational Research, Springer, vol. 21(4), pages 2333-2364, December.
    18. Gabriela N. Maschietto & Yassine Ouazene & Martín G. Ravetti & Maurício C. de Souza & Farouk Yalaoui, 2017. "Crane scheduling problem with non-interference constraints in a steel coil distribution centre," International Journal of Production Research, Taylor & Francis Journals, vol. 55(6), pages 1607-1622, March.
    19. Dirk Briskorn & Florian Jaehn & Andreas Wiehl, 2019. "A generator for test instances of scheduling problems concerning cranes in transshipment terminals," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 45-69, March.
    20. Ulf Speer & Kathrin Fischer, 2017. "Scheduling of Different Automated Yard Crane Systems at Container Terminals," Transportation Science, INFORMS, vol. 51(1), pages 305-324, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:124:y:2010:i:1:p:40-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.