IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v68y2017i3d10.1057_s41274-016-0014-5.html
   My bibliography  Save this article

Toward net-zero carbon manufacturing operations: an onsite renewables solution

Author

Listed:
  • Binbin Li

    (Texas State University)

  • Yu Tian

    (Sun Yat-Sen University
    Hubei University of Economics)

  • Fred Chen

    (Texas State University)

  • Tongdan Jin

    (Texas State University)

Abstract

A growing number of manufacturing firms are striving to achieve eco-friendly operations through onsite wind or solar generation. This paper proposes a zero-carbon power supply model to guide the integration of onsite renewable energy into manufacturing facilities. We intend to address two fundamental questions: (1) Is it cost-effective to deploy onsite wind turbines and solar photovoltaics (PVs) systems to achieve net-zero carbon environmental performance? (2) Is the renewable generation system able to meet the electricity demand despite the power intermittency? To answer these questions, we formulate a stochastic optimization model to minimize the levelized cost of onsite renewable energy. The goal is achieved by optimizing the sizing of wind and solar generating units. The proposed energy solution is tested in ten cities around the world under diverse climatic conditions. While PV is still expensive, we conclude that manufacturers could realize zero-carbon emissions at affordable cost provided the local wind speed is above 5 m/s.

Suggested Citation

  • Binbin Li & Yu Tian & Fred Chen & Tongdan Jin, 2017. "Toward net-zero carbon manufacturing operations: an onsite renewables solution," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(3), pages 308-321, March.
  • Handle: RePEc:pal:jorsoc:v:68:y:2017:i:3:d:10.1057_s41274-016-0014-5
    DOI: 10.1057/s41274-016-0014-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41274-016-0014-5
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41274-016-0014-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sam Aflaki & Paul R. Kleindorfer & Victor Sáenz Miera Polvorinos, 2013. "Finding and Implementing Energy Efficiency Projects in Industrial Facilities," Post-Print hal-00823923, HAL.
    2. Lave, Matthew & Kleissl, Jan, 2011. "Optimum fixed orientations and benefits of tracking for capturing solar radiation in the continental United States," Renewable Energy, Elsevier, vol. 36(3), pages 1145-1152.
    3. Tongdan Jin & Ying Yu & Elsayed Elsayed, 2015. "Reliability and quality control for distributed wind/solar energy integration: a multi-criteria approach," IISE Transactions, Taylor & Francis Journals, vol. 47(10), pages 1122-1138, October.
    4. Frances C. Moore & Delavane B. Diaz, 2015. "Temperature impacts on economic growth warrant stringent mitigation policy," Nature Climate Change, Nature, vol. 5(2), pages 127-131, February.
    5. Plambeck, Erica L., 2012. "Reducing greenhouse gas emissions through operations and supply chain management," Energy Economics, Elsevier, vol. 34(S1), pages 64-74.
    6. Ross Baldick & Sergey Kolos & Stathis Tompaidis, 2006. "Interruptible Electricity Contracts from an Electricity Retailer's Point of View: Valuation and Optimal Interruption," Operations Research, INFORMS, vol. 54(4), pages 627-642, August.
    7. Frances C. Moore & Delavane B. Diaz, 2015. "Erratum: Temperature impacts on economic growth warrant stringent mitigation policy," Nature Climate Change, Nature, vol. 5(3), pages 280-280, March.
    8. Victor Santana-Viera & Jesus Jimenez & Tongdan Jin & Jose Espiritu, 2015. "Implementing factory demand response via onsite renewable energy: a design-of-experiment approach," International Journal of Production Research, Taylor & Francis Journals, vol. 53(23), pages 7034-7048, December.
    9. Aalami, H.A. & Moghaddam, M. Parsa & Yousefi, G.R., 2010. "Demand response modeling considering Interruptible/Curtailable loads and capacity market programs," Applied Energy, Elsevier, vol. 87(1), pages 243-250, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pham, An & Jin, Tongdan & Novoa, Clara & Qin, Jin, 2019. "A multi-site production and microgrid planning model for net-zero energy operations," International Journal of Production Economics, Elsevier, vol. 218(C), pages 260-274.
    2. Bruno Mota & Luis Gomes & Pedro Faria & Carlos Ramos & Zita Vale & Regina Correia, 2021. "Production Line Optimization to Minimize Energy Cost and Participate in Demand Response Events," Energies, MDPI, vol. 14(2), pages 1-14, January.
    3. Magni, Carlo Alberto & Marchioni, Andrea & Baschieri, Davide, 2022. "Impact of financing and payout policy on the economic profitability of solar photovoltaic plants," International Journal of Production Economics, Elsevier, vol. 244(C).
    4. Meng, Ming & Pang, Tingting & Li, Xinxin & Niu, Yi, 2024. "Production decision analysis of China's fossil fuel power enterprises in dual market conditions," Energy, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiruwork B. Tibebu & Eric Hittinger & Qing Miao & Eric Williams, 2024. "Adoption Model Choice Affects the Optimal Subsidy for Residential Solar," Energies, MDPI, vol. 17(3), pages 1-19, February.
    2. Hongbo Duan & Gupeng Zhang & Shouyang Wang & Ying Fan, 2018. "Balancing China’s climate damage risk against emission control costs," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(3), pages 387-403, March.
    3. Luca Gerotto & Paolo Pellizzari, 2021. "A replication of Pindyck’s willingness to pay: on the efforts required to obtain results," SN Business & Economics, Springer, vol. 1(5), pages 1-25, May.
    4. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    5. Fremstad, Anders & Paul, Mark, 2022. "Neoliberalism and climate change: How the free-market myth has prevented climate action," Ecological Economics, Elsevier, vol. 197(C).
    6. Rongrong Xu & Yongxiang Wu & Ming Chen & Xuan Zhang & Wei Wu & Long Tan & Gaoxu Wang & Yi Xu & Bing Yan & Yuedong Xia, 2019. "Calculation of the contribution rate of China’s hydraulic science and technology based on a feedforward neural network," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-22, September.
    7. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    8. Tobias Kranz & Hamza Bennani & Matthias Neuenkirch, 2024. "Monetary Policy and Climate Change: Challenges and the Role of Major Central Banks," Research Papers in Economics 2024-01, University of Trier, Department of Economics.
    9. Franziska Piontek & Matthias Kalkuhl & Elmar Kriegler & Anselm Schultes & Marian Leimbach & Ottmar Edenhofer & Nico Bauer, 2019. "Economic Growth Effects of Alternative Climate Change Impact Channels in Economic Modeling," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1357-1385, August.
    10. Gregory Casey & Stephie Fried & Ethan Goode, 2023. "Projecting the Impact of Rising Temperatures: The Role of Macroeconomic Dynamics," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(3), pages 688-718, September.
    11. Alfredo R.M. Rosete & Hendrik Van den Berg, 2019. "Macroeconomic Policy in an Environmentally-Constrained Economy: A Dialectical Materialist Application of the Harrod Growth Model," Review of Radical Political Economics, Union for Radical Political Economics, vol. 51(4), pages 544-552, December.
    12. Baarsch, Florent & Granadillos, Jessie R. & Hare, William & Knaus, Maria & Krapp, Mario & Schaeffer, Michiel & Lotze-Campen, Hermann, 2020. "The impact of climate change on incomes and convergence in Africa," World Development, Elsevier, vol. 126(C).
    13. Adam Michael Bauer & Cristian Proistosescu & Gernot Wagner, 2023. "Carbon Dioxide as a Risky Asset," CESifo Working Paper Series 10278, CESifo.
    14. Sean B. Walker & Keith W. Hipel, 2017. "Strategy, Complexity and Cooperation: The Sino-American Climate Regime," Group Decision and Negotiation, Springer, vol. 26(5), pages 997-1027, September.
    15. Wu, Bingqing & Sarker, Bhaba R. & Paudel, Krishna P., 2015. "Sustainable energy from biomass: Biomethane manufacturing plant location and distribution problem," Applied Energy, Elsevier, vol. 158(C), pages 597-608.
    16. Koiry, Subrata & Huang, Wei, 2023. "Do ecological protection approaches affect total factor productivity change of cropland production in Sweden?," Ecological Economics, Elsevier, vol. 209(C).
    17. Ganesh, Ibram, 2016. "Electrochemical conversion of carbon dioxide into renewable fuel chemicals – The role of nanomaterials and the commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1269-1297.
    18. Matthew Agarwala & Josh Martin, 2022. "Environmentally-adjusted productivity measures for the UK," Working Papers 028, The Productivity Institute.
    19. Wu, Zhiyang & Zhou, Tao & Zhang, Ning & Choi, Yongrok & Kong, Fanbin, 2023. "A hidden risk in climate change: The effect of daily rainfall shocks on industrial activities," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 161-180.
    20. Richard S.J. Tol, 2021. "Estimates of the social cost of carbon have not changed over time," Working Paper Series 0821, Department of Economics, University of Sussex Business School.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:68:y:2017:i:3:d:10.1057_s41274-016-0014-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.