IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v95y2000i1p159-17510.1023-a1018993822494.html
   My bibliography  Save this article

Even-aged restrictions with sub-graph adjacency

Author

Listed:
  • T.M. Barrett
  • J.K. Gilless

Abstract

Restrictions on the size and proximity of clearcuts have led to the development of a variety of exact and heuristic methods to optimize the net present value of timber harvests, subject to adjacency constraints. Most treat harvest units as pre-defined, and impose adjacency constraints on any two units sharing a common border. By using graph theory notation to define sub-graph adjacency constraints, opening size can be considered variable, which may be more appropriate for landscape-level planning. A small example data set is used in this paper to demonstrate the difference between the two types of adjacency constraints for both integer programming and heuristic solution methods. Copyright Kluwer Academic Publishers 2000

Suggested Citation

  • T.M. Barrett & J.K. Gilless, 2000. "Even-aged restrictions with sub-graph adjacency," Annals of Operations Research, Springer, vol. 95(1), pages 159-175, January.
  • Handle: RePEc:spr:annopr:v:95:y:2000:i:1:p:159-175:10.1023/a:1018993822494
    DOI: 10.1023/A:1018993822494
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1018993822494
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1018993822494?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Könnyű, Nóra & Tóth, Sándor F., 2013. "A cutting plane method for solving harvest scheduling models with area restrictions," European Journal of Operational Research, Elsevier, vol. 228(1), pages 236-248.
    2. Marcos Goycoolea & Alan T. Murray & Francisco Barahona & Rafael Epstein & Andrés Weintraub, 2005. "Harvest Scheduling Subject to Maximum Area Restrictions: Exploring Exact Approaches," Operations Research, INFORMS, vol. 53(3), pages 490-500, June.
    3. Borges, Paulo & Eid, Tron & Bergseng, Even, 2014. "Applying simulated annealing using different methods for the neighborhood search in forest planning problems," European Journal of Operational Research, Elsevier, vol. 233(3), pages 700-710.
    4. Nabhani, Abbas & Mardaneh, Elham & Sjølie, Hanne K., 2024. "Multi-objective optimization of forest ecosystem services under uncertainty," Ecological Modelling, Elsevier, vol. 494(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:95:y:2000:i:1:p:159-175:10.1023/a:1018993822494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.