IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v255y2016i2p345-356.html
   My bibliography  Save this article

Prioritized customer order scheduling to maximize throughput

Author

Listed:
  • Zhao, Yaping
  • Xu, Xiaoyun
  • Li, Haidong
  • Liu, Yanni

Abstract

This study is concerned with a throughput maximization problem of prioritized customer orders. Customer orders with different priorities arrive at a server station dynamically. Each order consists of multiple product types with random workloads. These workloads will be assigned to and processed by a set of unrelated servers. Two commonly applied assignment schemes, named Workload Assignment Scheme (WAS) and Server Assignment Scheme (SAS) are considered. The objective is to determine the optimal assignments under the two assignment schemes to maximize the long-run throughput. Mathematical programming models with relaxed stability constraints are developed for the two assignment schemes, and the adequacy of the programes is guaranteed through fluid limit model analysis. It is shown that these two mathematical programes share the same optimal value, and that there exists a one-to-one correspondence between the optimal assignments. Numerical experiment verifies that the two proposed mathematical programes yield the same optimal throughput, and demonstrates that the corresponding optimal assignments under the two assignment schemes can be transformed into each other.

Suggested Citation

  • Zhao, Yaping & Xu, Xiaoyun & Li, Haidong & Liu, Yanni, 2016. "Prioritized customer order scheduling to maximize throughput," European Journal of Operational Research, Elsevier, vol. 255(2), pages 345-356.
  • Handle: RePEc:eee:ejores:v:255:y:2016:i:2:p:345-356
    DOI: 10.1016/j.ejor.2016.05.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716304209
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.05.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Down, Douglas G. & Lewis, Mark E., 2006. "Dynamic load balancing in parallel queueing systems: Stability and optimal control," European Journal of Operational Research, Elsevier, vol. 168(2), pages 509-519, January.
    2. Rumsewicz, M. & Henderson, W., 1989. "Closed two node priority queueing networks," European Journal of Operational Research, Elsevier, vol. 38(2), pages 184-201, January.
    3. Down, Douglas G. & Karakostas, George, 2008. "Maximizing throughput in queueing networks with limited flexibility," European Journal of Operational Research, Elsevier, vol. 187(1), pages 98-112, May.
    4. J. G. Dai & G. Weiss, 1996. "Stability and Instability of Fluid Models for Reentrant Lines," Mathematics of Operations Research, INFORMS, vol. 21(1), pages 115-134, February.
    5. Joseph Y-T. Leung & Haibing Li & Michael Pinedo, 2005. "Order Scheduling Models: An Overview," Springer Books, in: Graham Kendall & Edmund K. Burke & Sanja Petrovic & Michel Gendreau (ed.), Multidisciplinary Scheduling: Theory and Applications, pages 37-53, Springer.
    6. Liu, Jialu & Yang, Sheng & Wu, Aiguo & Hu, S. Jack, 2012. "Multi-state throughput analysis of a two-stage manufacturing system with parallel unreliable machines and a finite buffer," European Journal of Operational Research, Elsevier, vol. 219(2), pages 296-304.
    7. Askin, Ronald G. & Chen, Jiaqiong, 2006. "Dynamic task assignment for throughput maximization with worksharing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 853-869, February.
    8. Sigrún Andradóttir & Hayriye Ayhan & Douglas G. Down, 2003. "Dynamic Server Allocation for Queueing Networks with Flexible Servers," Operations Research, INFORMS, vol. 51(6), pages 952-968, December.
    9. Hong Chen & Hanqin Zhang, 2000. "Stability of Multiclass Queueing Networks Under Priority Service Disciplines," Operations Research, INFORMS, vol. 48(1), pages 26-37, February.
    10. Wei-Min Lan & Tava Lennon Olsen, 2006. "Multiproduct Systems with Both Setup Times and Costs: Fluid Bounds and Schedules," Operations Research, INFORMS, vol. 54(3), pages 505-522, June.
    11. Sigrún Andradóttir & Hayriye Ayhan & Douglas G. Down, 2001. "Server Assignment Policies for Maximizing the Steady-State Throughput of Finite Queueing Systems," Management Science, INFORMS, vol. 47(10), pages 1421-1439, October.
    12. Delasay, Mohammad & Kolfal, Bora & Ingolfsson, Armann, 2012. "Maximizing throughput in finite-source parallel queue systems," European Journal of Operational Research, Elsevier, vol. 217(3), pages 554-559.
    13. J. G. Dai & Caiwei Li, 2003. "Stabilizing Batch-Processing Networks," Operations Research, INFORMS, vol. 51(1), pages 123-136, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cavada, Juan P. & Cortés, Cristián E. & Goic, Marcel & Weintraub, Andrés & Zambrano, Juan I., 2020. "Accounting for cost heterogeneity on the demand in the context of a technician dispatching problem," European Journal of Operational Research, Elsevier, vol. 287(3), pages 820-831.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. G. Dai & O. B. Jennings, 2004. "Stabilizing Queueing Networks with Setups," Mathematics of Operations Research, INFORMS, vol. 29(4), pages 891-922, November.
    2. Emmett J. Lodree & Nezih Altay & Robert A. Cook, 2019. "Staff assignment policies for a mass casualty event queuing network," Annals of Operations Research, Springer, vol. 283(1), pages 411-442, December.
    3. Legros, Benjamin & Jouini, Oualid & Akşin, O. Zeynep & Koole, Ger, 2020. "Front-office multitasking between service encounters and back-office tasks," European Journal of Operational Research, Elsevier, vol. 287(3), pages 946-963.
    4. Aili (Alice) Zou & Douglas G. Down, 2018. "Asymptotically Maximal Throughput in Tandem Systems with Flexible and Dedicated Servers," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(05), pages 1-15, October.
    5. Sigrún Andradóttir & Hayriye Ayhan & Douglas G. Down, 2007. "Compensating for Failures with Flexible Servers," Operations Research, INFORMS, vol. 55(4), pages 753-768, August.
    6. Eser Kırkızlar & Sigrún Andradóttir & Hayriye Ayhan, 2010. "Robustness of efficient server assignment policies to service time distributions in finite‐buffered lines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(6), pages 563-582, September.
    7. Naumov, Valeriy & Martikainen, Olli, 2011. "Method for Throughput Maximization of Multiclass Networks with Flexible Servers," Discussion Papers 1261, The Research Institute of the Finnish Economy.
    8. Yi‐Chun Tsai & Nilay Tanık Argon, 2008. "Dynamic server assignment policies for assembly‐type queues with flexible servers," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(3), pages 234-251, April.
    9. Eugene Furman & Adam Diamant & Murat Kristal, 2021. "Customer Acquisition and Retention: A Fluid Approach for Staffing," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4236-4257, November.
    10. Nilay Tanık Argon & Sigrún Andradóttir, 2017. "Pooling in tandem queueing networks with non-collaborative servers," Queueing Systems: Theory and Applications, Springer, vol. 87(3), pages 345-377, December.
    11. Sigrún Andradóttir & Hayriye Ayhan & Douglas G. Down, 2022. "Synchronous resource allocation: modeling, capacity, and optimization," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1287-1310, December.
    12. Tuğçe Işık & Sigrún Andradóttir & Hayriye Ayhan, 2016. "Optimal control of queueing systems with non-collaborating servers," Queueing Systems: Theory and Applications, Springer, vol. 84(1), pages 79-110, October.
    13. Peng Wang & Kai Pan & Zhenzhen Yan & Yun Fong Lim, 2022. "Managing Stochastic Bucket Brigades on Discrete Work Stations," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 358-373, January.
    14. Eser Kırkızlar & Sigrún Andradóttir & Hayriye Ayhan, 2012. "Flexible Servers in Understaffed Tandem Lines," Production and Operations Management, Production and Operations Management Society, vol. 21(4), pages 761-777, July.
    15. Sennott, Linn I. & Van Oyen, Mark P. & Iravani, Seyed M.R., 2006. "Optimal dynamic assignment of a flexible worker on an open production line with specialists," European Journal of Operational Research, Elsevier, vol. 170(2), pages 541-566, April.
    16. Sigrún Andradóttir & Hayriye Ayhan, 2005. "Throughput Maximization for Tandem Lines with Two Stations and Flexible Servers," Operations Research, INFORMS, vol. 53(3), pages 516-531, June.
    17. J. G. Dai & Caiwei Li, 2003. "Stabilizing Batch-Processing Networks," Operations Research, INFORMS, vol. 51(1), pages 123-136, February.
    18. S.M.R. Iravani & J.A. Buzacott & M.J.M. Posner, 2005. "A robust policy for serial agile production systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(1), pages 58-73, February.
    19. Gabriel Zayas-Cabán & Jingui Xie & Linda V. Green & Mark E. Lewis, 2016. "Dynamic control of a tandem system with abandonments," Queueing Systems: Theory and Applications, Springer, vol. 84(3), pages 279-293, December.
    20. Down, Douglas G. & Karakostas, George, 2008. "Maximizing throughput in queueing networks with limited flexibility," European Journal of Operational Research, Elsevier, vol. 187(1), pages 98-112, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:255:y:2016:i:2:p:345-356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.