IDEAS home Printed from https://ideas.repec.org/a/inm/ormsom/v16y2014i2p251-262.html
   My bibliography  Save this article

Sequencing Appointments for Service Systems Using Inventory Approximations

Author

Listed:
  • Ho-Yin Mak

    (Department of Industrial Engineering and Logistics Management, The Hong Kong University of Science and Technology, Kowloon, Hong Kong)

  • Ying Rong

    (Antai College of Economics and Management, Shanghai Jiao Tong University, 200052 Shanghai, China)

  • Jiawei Zhang

    (Department of Information, Operations, and Management Sciences, Stern School of Business, New York University, New York 10012, New York)

Abstract

Managing appointments for service systems with random job durations is a challenging task. We consider a class of appointment planning problems that involve two sets of decisions: job sequencing , i.e., determining the order in which a list of jobs should be performed by the server, and appointment scheduling , i.e., planning the starting times for jobs. These decisions are interconnected because their joint goal is to minimize the expected server idle time and job late-start penalty costs incurred because of randomness in job durations. In this paper, we design new heuristics for sequencing appointments. The idea behind the development of these heuristics is the structural connection between such appointment scheduling problems and stochastic inventory control in serial supply chains. In particular, the decision of determining time allowances as buffers against random job durations is analogous to that of selecting inventory levels as buffers to accommodate random demand in a supply chain; having excess buffers in appointment scheduling and supply chain settings incurs idle time and excess inventory holding costs, respectively, and having inadequate buffers leads to delays of subsequent jobs and backorders, respectively. Recognizing this connection, we propose tractable approximations for the job sequencing problem, obtain several insights, and further develop a very simple sequencing rule of ordering jobs by duration variance to late-start penalty cost ratio. Computational results show that our proposed heuristics produce close-to-optimal job sequences with significantly reduced computation times compared with those produced using an exact mixed-integer stochastic programming formulation based on the sample-average approximation approach.

Suggested Citation

  • Ho-Yin Mak & Ying Rong & Jiawei Zhang, 2014. "Sequencing Appointments for Service Systems Using Inventory Approximations," Manufacturing & Service Operations Management, INFORMS, vol. 16(2), pages 251-262, May.
  • Handle: RePEc:inm:ormsom:v:16:y:2014:i:2:p:251-262
    DOI: 10.1287/msom.2013.0470
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/msom.2013.0470
    Download Restriction: no

    File URL: https://libkey.io/10.1287/msom.2013.0470?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qingxia Kong & Chung-Yee Lee & Chung-Piaw Teo & Zhichao Zheng, 2013. "Scheduling Arrivals to a Stochastic Service Delivery System Using Copositive Cones," Operations Research, INFORMS, vol. 61(3), pages 711-726, June.
    2. Kevin H. Shang & Jing-Sheng Song, 2003. "Newsvendor Bounds and Heuristic for Optimal Policies in Serial Supply Chains," Management Science, INFORMS, vol. 49(5), pages 618-638, May.
    3. Fangruo Chen & Yu-Sheng Zheng, 1994. "Lower Bounds for Multi-Echelon Stochastic Inventory Systems," Management Science, INFORMS, vol. 40(11), pages 1426-1443, November.
    4. Woonghee Tim Huh & Ganesh Janakiraman & Mahesh Nagarajan, 2010. "Technical Note ---Capacitated Serial Inventory Systems: Sample Path and Stability Properties Under Base-Stock Policies," Operations Research, INFORMS, vol. 58(4-part-1), pages 1017-1022, August.
    5. Mehmet A. Begen & Maurice Queyranne, 2011. "Appointment Scheduling with Discrete Random Durations," Mathematics of Operations Research, INFORMS, vol. 36(2), pages 240-257, May.
    6. Brian T. Denton & Andrew J. Miller & Hari J. Balasubramanian & Todd R. Huschka, 2010. "Optimal Allocation of Surgery Blocks to Operating Rooms Under Uncertainty," Operations Research, INFORMS, vol. 58(4-part-1), pages 802-816, August.
    7. Federico Sabria & Carlos F. Daganzo, 1989. "Approximate Expressions for Queueing Systems with Scheduled Arrivals and Established Service Order," Transportation Science, INFORMS, vol. 23(3), pages 159-165, August.
    8. Paul Glasserman & Sridhar Tayur, 1994. "The Stability of a Capacitated, Multi-Echelon Production-Inventory System Under a Base-Stock Policy," Operations Research, INFORMS, vol. 42(5), pages 913-925, October.
    9. Marcelo Olivares & Christian Terwiesch & Lydia Cassorla, 2008. "Structural Estimation of the Newsvendor Model: An Application to Reserving Operating Room Time," Management Science, INFORMS, vol. 54(1), pages 41-55, January.
    10. Andrew J. Clark & Herbert Scarf, 2004. "Optimal Policies for a Multi-Echelon Inventory Problem," Management Science, INFORMS, vol. 50(12_supple), pages 1782-1790, December.
    11. Brian Denton & James Viapiano & Andrea Vogl, 2007. "Optimization of surgery sequencing and scheduling decisions under uncertainty," Health Care Management Science, Springer, vol. 10(1), pages 13-24, February.
    12. Fangruo Chen & Jing-Sheng Song, 2001. "Optimal Policies for Multiechelon Inventory Problems with Markov-Modulated Demand," Operations Research, INFORMS, vol. 49(2), pages 226-234, April.
    13. Georgia Perakis & Guillaume Roels, 2008. "Regret in the Newsvendor Model with Partial Information," Operations Research, INFORMS, vol. 56(1), pages 188-203, February.
    14. Chuen-Teck See & Melvyn Sim, 2010. "Robust Approximation to Multiperiod Inventory Management," Operations Research, INFORMS, vol. 58(3), pages 583-594, June.
    15. Guido Kaandorp & Ger Koole, 2007. "Optimal outpatient appointment scheduling," Health Care Management Science, Springer, vol. 10(3), pages 217-229, September.
    16. Mehmet A. Begen & Retsef Levi & Maurice Queyranne, 2012. "Technical Note---A Sampling-Based Approach to Appointment Scheduling," Operations Research, INFORMS, vol. 60(3), pages 675-681, June.
    17. Rachel R. Chen & Lawrence W. Robinson, 2014. "Sequencing and Scheduling Appointments with Potential Call-In Patients," Production and Operations Management, Production and Operations Management Society, vol. 23(9), pages 1522-1538, September.
    18. Jan A. Van Mieghem, 2000. "Price and Service Discrimination in Queuing Systems: Incentive Compatibility of Gc\mu Scheduling," Management Science, INFORMS, vol. 46(9), pages 1249-1267, September.
    19. Brecht Cardoen & Erik Demeulemeester, 2011. "A Decision Support System For Surgery Sequencing At Uz Leuven'S Day-Care Department," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 10(03), pages 435-450.
    20. Camilo Mancilla & Robert Storer, 2012. "A sample average approximation approach to stochastic appointment sequencing and scheduling," IISE Transactions, Taylor & Francis Journals, vol. 44(8), pages 655-670.
    21. Cardoen, Brecht & Demeulemeester, Erik & Beliën, Jeroen, 2010. "Operating room planning and scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 201(3), pages 921-932, March.
    22. P. Patrick Wang, 1993. "Static and dynamic scheduling of customer arrivals to a single‐server system," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(3), pages 345-360, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen, Zuo-Jun Max & Xie, Jingui & Zheng, Zhichao & Zhou, Han, 2023. "Dynamic scheduling with uncertain job types," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1047-1060.
    2. Yuanzheng Ma & Tong Wang & Huan Zheng, 2023. "On fairness and efficiency in nonprofit operations: Dynamic resource allocations," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1778-1792, June.
    3. Paola Cappanera & Filippo Visintin & Carlo Banditori & Daniele Feo, 2019. "Evaluating the long-term effects of appointment scheduling policies in a magnetic resonance imaging setting," Flexible Services and Manufacturing Journal, Springer, vol. 31(1), pages 212-254, March.
    4. Ho-Yin Mak & Ying Rong & Jiawei Zhang, 2015. "Appointment Scheduling with Limited Distributional Information," Management Science, INFORMS, vol. 61(2), pages 316-334, February.
    5. Christos Zacharias & Mor Armony, 2017. "Joint Panel Sizing and Appointment Scheduling in Outpatient Care," Management Science, INFORMS, vol. 63(11), pages 3978-3997, November.
    6. Wu, Xueqi & Zhou, Shenghai, 2022. "Sequencing and scheduling appointments on multiple servers with stochastic service durations and customer arrivals," Omega, Elsevier, vol. 106(C).
    7. Miao Bai & Robert H. Storer & Gregory L. Tonkay, 2022. "Surgery Sequencing Coordination with Recovery Resource Constraints," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1207-1223, March.
    8. Ruiwei Jiang & Siqian Shen & Yiling Zhang, 2017. "Integer Programming Approaches for Appointment Scheduling with Random No-Shows and Service Durations," Operations Research, INFORMS, vol. 65(6), pages 1638-1656, December.
    9. Guo, Hainan & Xie, Yue & Jiang, Bowen & Tang, Jiafu, 2024. "When outpatient appointment meets online consultation: A joint scheduling optimization framework," Omega, Elsevier, vol. 127(C).
    10. Jin Qi, 2017. "Mitigating Delays and Unfairness in Appointment Systems," Management Science, INFORMS, vol. 63(2), pages 566-583, February.
    11. Nur Banu Demir & Serhat Gul & Melih Çelik, 2021. "A stochastic programming approach for chemotherapy appointment scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 112-133, February.
    12. Chang, Zhiqi & Ding, Jian-Ya & Song, Shiji, 2019. "Distributionally robust scheduling on parallel machines under moment uncertainty," European Journal of Operational Research, Elsevier, vol. 272(3), pages 832-846.
    13. van Eekelen, Wouter, 2023. "Distributionally robust views on queues and related stochastic models," Other publications TiSEM 9b99fc05-9d68-48eb-ae8c-9, Tilburg University, School of Economics and Management.
    14. Christos Zacharias & Michael Pinedo, 2017. "Managing Customer Arrivals in Service Systems with Multiple Identical Servers," Manufacturing & Service Operations Management, INFORMS, vol. 19(4), pages 639-656, October.
    15. Tinglong Dai & Sridhar Tayur, 2020. "OM Forum—Healthcare Operations Management: A Snapshot of Emerging Research," Manufacturing & Service Operations Management, INFORMS, vol. 22(5), pages 869-887, September.
    16. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    17. Zhan, Yang & Wang, Zizhuo & Wan, Guohua, 2021. "Home service routing and appointment scheduling with stochastic service times," European Journal of Operational Research, Elsevier, vol. 288(1), pages 98-110.
    18. Shenghai Zhou & Yichuan Ding & Woonghee Tim Huh & Guohua Wan, 2021. "Constant Job‐Allowance Policies for Appointment Scheduling: Performance Bounds and Numerical Analysis," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2211-2231, July.
    19. Zhou, Shenghai & Li, Debiao & Yin, Yong, 2021. "Coordinated appointment scheduling with multiple providers and patient-and-physician matching cost in specialty care," Omega, Elsevier, vol. 101(C).
    20. Kuang, Xiaolong & Lamadrid, Alberto J. & Zuluaga, Luis F., 2019. "Pricing in non-convex markets with quadratic deliverability costs," Energy Economics, Elsevier, vol. 80(C), pages 123-131.
    21. William P. Millhiser & Emre A. Veral, 2019. "A decision support system for real-time scheduling of multiple patient classes in outpatient services," Health Care Management Science, Springer, vol. 22(1), pages 180-195, March.
    22. Avishai Mandelbaum & Petar Momčilović & Nikolaos Trichakis & Sarah Kadish & Ryan Leib & Craig A. Bunnell, 2020. "Data-Driven Appointment-Scheduling Under Uncertainty: The Case of an Infusion Unit in a Cancer Center," Management Science, INFORMS, vol. 66(1), pages 243-270, January.
    23. Pinar Keskinocak & Nicos Savva, 2020. "A Review of the Healthcare-Management (Modeling) Literature Published in Manufacturing & Service Operations Management," Manufacturing & Service Operations Management, INFORMS, vol. 22(1), pages 59-72, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van Eekelen, Wouter, 2023. "Distributionally robust views on queues and related stochastic models," Other publications TiSEM 9b99fc05-9d68-48eb-ae8c-9, Tilburg University, School of Economics and Management.
    2. Shenghai Zhou & Yichuan Ding & Woonghee Tim Huh & Guohua Wan, 2021. "Constant Job‐Allowance Policies for Appointment Scheduling: Performance Bounds and Numerical Analysis," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2211-2231, July.
    3. Ho-Yin Mak & Ying Rong & Jiawei Zhang, 2015. "Appointment Scheduling with Limited Distributional Information," Management Science, INFORMS, vol. 61(2), pages 316-334, February.
    4. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    5. Avishai Mandelbaum & Petar Momčilović & Nikolaos Trichakis & Sarah Kadish & Ryan Leib & Craig A. Bunnell, 2020. "Data-Driven Appointment-Scheduling Under Uncertainty: The Case of an Infusion Unit in a Cancer Center," Management Science, INFORMS, vol. 66(1), pages 243-270, January.
    6. Ruiwei Jiang & Siqian Shen & Yiling Zhang, 2017. "Integer Programming Approaches for Appointment Scheduling with Random No-Shows and Service Durations," Operations Research, INFORMS, vol. 65(6), pages 1638-1656, December.
    7. Woonghee Tim Huh & Ganesh Janakiraman & Mahesh Nagarajan, 2016. "Capacitated Multiechelon Inventory Systems: Policies and Bounds," Manufacturing & Service Operations Management, INFORMS, vol. 18(4), pages 570-584, October.
    8. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    9. Shehadeh, Karmel S. & Cohn, Amy E.M. & Epelman, Marina A., 2019. "Analysis of models for the Stochastic Outpatient Procedure Scheduling Problem," European Journal of Operational Research, Elsevier, vol. 279(3), pages 721-731.
    10. Christos Zacharias & Tallys Yunes, 2020. "Multimodularity in the Stochastic Appointment Scheduling Problem with Discrete Arrival Epochs," Management Science, INFORMS, vol. 66(2), pages 744-763, February.
    11. Zhou, Shenghai & Li, Debiao & Yin, Yong, 2021. "Coordinated appointment scheduling with multiple providers and patient-and-physician matching cost in specialty care," Omega, Elsevier, vol. 101(C).
    12. de Kok, Ton & Grob, Christopher & Laumanns, Marco & Minner, Stefan & Rambau, Jörg & Schade, Konrad, 2018. "A typology and literature review on stochastic multi-echelon inventory models," European Journal of Operational Research, Elsevier, vol. 269(3), pages 955-983.
    13. Qingxia Kong & Chung-Yee Lee & Chung-Piaw Teo & Zhichao Zheng, 2013. "Scheduling Arrivals to a Stochastic Service Delivery System Using Copositive Cones," Operations Research, INFORMS, vol. 61(3), pages 711-726, June.
    14. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    15. Wu, Xueqi & Zhou, Shenghai, 2022. "Sequencing and scheduling appointments on multiple servers with stochastic service durations and customer arrivals," Omega, Elsevier, vol. 106(C).
    16. Khaniyev, Taghi & Kayış, Enis & Güllü, Refik, 2020. "Next-day operating room scheduling with uncertain surgery durations: Exact analysis and heuristics," European Journal of Operational Research, Elsevier, vol. 286(1), pages 49-62.
    17. Gartner, Daniel & Kolisch, Rainer, 2014. "Scheduling the hospital-wide flow of elective patients," European Journal of Operational Research, Elsevier, vol. 233(3), pages 689-699.
    18. Li Chen & Jing-Sheng Song & Yue Zhang, 2017. "Serial Inventory Systems with Markov-Modulated Demand: Derivative Bounds, Asymptotic Analysis, and Insights," Operations Research, INFORMS, vol. 65(5), pages 1231-1249, October.
    19. Eun, Joonyup & Kim, Sang-Phil & Yih, Yuehwern & Tiwari, Vikram, 2019. "Scheduling elective surgery patients considering time-dependent health urgency: Modeling and solution approaches," Omega, Elsevier, vol. 86(C), pages 137-153.
    20. Mohammad Heydari & Kin Keung Lai & Yanan Fan & Xiaoyang Li, 2022. "A Review of Emergency and Disaster Management in the Process of Healthcare Operation Management for Improving Hospital Surgical Intake Capacity," Mathematics, MDPI, vol. 10(15), pages 1-34, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormsom:v:16:y:2014:i:2:p:251-262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.